中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小行星探测科学目标进展与展望

李春来 刘建军 严韦 封剑青 任鑫 刘斌

李春来, 刘建军, 严韦, 封剑青, 任鑫, 刘斌. 小行星探测科学目标进展与展望[J]. 深空探测学报(中英文), 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
引用本文: 李春来, 刘建军, 严韦, 封剑青, 任鑫, 刘斌. 小行星探测科学目标进展与展望[J]. 深空探测学报(中英文), 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
LI Chunlai, LIU Jianjun, YAN Wei, FENG Jianqing, REN Xin, LIU Bin. Overview of Scientific Objectives for Minor Planets Exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
Citation: LI Chunlai, LIU Jianjun, YAN Wei, FENG Jianqing, REN Xin, LIU Bin. Overview of Scientific Objectives for Minor Planets Exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003

小行星探测科学目标进展与展望

doi: 10.15982/j.issn.2095-7777.2019.05.003

Overview of Scientific Objectives for Minor Planets Exploration

  • 摘要: 由于较好地保留了太阳系早期形成和演化历史的遗迹,小行星,尤其是近地小行星,已成为国际深空探测领域的研究热点。介绍了小行星的定义、分类和主要探测方式,指出目前小行星探测已进入空间探测的新时代;总结了国际小行星探测的现状,包括已实施和正在实施的小行星探测任务的科学目标、科学载荷配置,以及获取的主要科学数据等;探讨了未来小行星探测的发展趋势和主要科学问题,并对我国未来自主小行星探测任务科学目标的制定进行了展望。
  • [1] GB/T 30114.4-2014,空间科学及其应用术语,第4部分:月球与行星科学[S].北京:中国标准出版社, 2013.
    [2] International Astronomical Union (IAU). IAU 2006 general assembly:results of the IAU resolution votes[EB/OL].[2019-04-21]. https://www.iau.org/news/pressreleases/detail/iau0603/#3
    [3] International Astronomical Union. Minor planet center:latest published data[EB/OL].[2019-04-21]. https://www. minorplanetcenter.net/mpc/summary.
    [4] Robert Roy Britt. Closest flyby of large asteroid to be Naked-eye visible[EB/OL].(2005-02-04)[2019-04-21].https://www.space.com/769-closest-flyby-large-asteroid-naked-eye-visible.html.
    [5] RUBIN A E, GROSSMAN J N. Meteorite and meteoroid:new comprehensive definitions[J]. Meteoritics and Planetary Science, 2010, 45(1):114-122.
    [6] BOTTKE W F JR, DURDA D D, NESVORNY D, et al. The fossilized size distribution of the main asteroid belt[J]. Icarus, 2005, 175:111-140.
    [7] KERROD R. Asteroids, comets, and meteors[M]. USA:Lerner Publications Co., 2000.
    [8] CNEOS. The center for Near-Earth object studies (CNEOS) discovery statistics[EB/OL].[2019-04-21]. https://cneos.jpl.nasa.gov/stats/totals.html.
    [9] International Astronomical Union (IAU). Minor planet center:list of Jupiter trojans[EB/OL].[2019-04-21]. https://minorplanetcenter.net/iau/lists/JupiterTrojans.html.
    [10] International Astronomical Union (IAU). Minor planet center:list of Mars trojans[EB/OL].[2019-04-21]. http://www.minorplanetcenter.org/iau/lists/MarsTrojans.html.
    [11] International Astronomical Union (IAU). Minor planet center:list of Earth trojans[EB/OL].[2019-04-21]. http://www.minorplanetcenter.org/iau/lists/EarthTrojans.html.
    [12] International Astronomical Union (IAU). Minor planet center:list of Uranus trojans[EB/OL].[2019-04-21]. http://www.minorplanetcenter.org/iau/lists/UranusTrojans.html.
    [13] International Astronomical Union (IAU). Minor planet center:list of Neptune trojans[EB/OL].[2019-04-21]. http://www.minorplanetcenter.org/iau/lists/NeptuneTrojans.html.
    [14] HORNER J, EVANS N W, BAILEY M E. Simulations of the population of centaurs I:the bulk statistics[J]. Monthly Notices of the Royal Astronomical Society, 2004, 354(3):798-810.
    [15] International Astronomical Union (IAU). Minor planet center:list of transneptunian objects[EB/OL].[2019-04-21]. http://www.minorplanetcenter.net/iau/lists/TNOs.html.
    [16] BUS S J, BINZEL R P. Phase II of the small Main-Belt Asteroid spectroscopic survey:a feature-based taxonomy[J]. Icarus, 2002, 158:146-177.
    [17] BUS S J, BINZEL R P. Phase II of the small Main-Belt Asteroid spectroscopic survey:the observations[J]. Icarus, 2002, 106-145.
    [18] DEMEO F E, BINZEL R P, et al, An extension of the Bus Asteroid taxonomy into the near-infrared[J]. Icarus, 2009, 202:160-180.
    [19] POPESCU M, BIRLAN M, NEDELCU D A. Modeling of Asteroid spectra-M4AST[J]. Astronomy and Astrophysics, 2012, 554:A130.
    [20] ALEX S, BEN W, BEN Z, et al. Imaging observations of Asteroids with hubble space telescope[J]. Icarus, 1999, 137(2):260-268.
    [21] ANDERSEN A C, MICHELSEN R, HAACK H, et al. The autonomous Asteroid mapping mission "Bering"[J]. Acta Astronautica, 2006, 59:966-973.
    [22] MARTINOT V, MORBIDELLI A. The EUNEOS mission:a european NEO space-based observatory[J]. Acta Astronautica, 2006, 59:679-688.
    [23] AUSTER H U, RICHTER I, GLASSMEIER K, et al. Magnetic field investigations during Rosetta's 2867Šteins flyby[J]. Planetary and Space Science, 2010, 58(9):1124-1128.
    [24] PÄTZOLD M, ANDERT T P, ASMAR S W, et al.Asteroid 21 lutetia:low Mass, high density[J]. Science, 2011. 334(6055):491-492.
    [25] NASA. Solar system exploration:galileo legacy site[EB/OL].[2019-04-21]. https://solarsystem.nasa.gov/galileo/index.cfm.
    [26] VEVERKA J, BELTON M, KLAASEN K, et al. Galileo's encounter with 951 Gaspra:overview[J]. Icarus, 1999, 107(1):2-17.
    [27] NASA. NSSDC master catalog:spacecraft-NEAR shoemaker[EB/OL].[2019-04-21]. https://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1996-008A.
    [28] ZUBER M T, SMITH D E, CHENG A F, et al. The shape of 433 Eros from the NEAR-shoemaker laser rangefinder[J]. Science, 2000, 289(5487):2097-2101.
    [29] YEOMANS D K, ANTREASIAN P G, BARRIOT J P, et al. Radio science results during the NEAR-shoemaker spacecraft rendezvous with Eros[J]. Science, 2000, 289(5487):2085-2088.
    [30] YEOMANS D K, et al. Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby[J]. Science, 1997, 278(5346):2106-2109.
    [31] RAYMAN M D, VARGHESE P, LEHMAN D H, et al. Results from the Deep Space 1 technology validation mission[J]. Acta Astronautica, 2000, 47(2-9):475-487.
    [32] NASA. Solar system exploration:hayabusa[EB/OL].[2019-04-21]. https://solarsystem.nasa.gov/missions/hayabusa/in-depth/.
    [33] AKIRA F. The rubble-pile Asteroid itokawa as observed by Hayabusa[J]. Science, 2006, 312(5778):1330-1334.
    [34] YUICHI T, MAKOTO Y. MASANAO A,et al. System design of the Hayabusa 2-Asteroid sample return mission to 1999 JU3[J]. Acta Astronautica, 2013, 91:356-362.
    [35] CLARK S. Japanese spacecraft reaches asteroid after threeandahalfyear journey[EB/OL].[2019-04-21]. https://www.nature.com/articles/d41586-018-05544-9.
    [36] Japanese probe drops tiny hopping robots toward big Asteroid Ryugu[EB/OL].(2018-09-12)[2019-04-21]. https://www.Space.com.
    [37] DLR. MASCOT lands safely on asteroid Ryugu[EB/OL].(2018-10-03)[2019-04-21]. https://www.nature.com/articles/d41586-018-06928-7.
    [38] JAXA. Hayabusa2 mission schedule[EB/OL].(2018-10-04)[2019-04-21]. https://www.nature.com/news/2010/100629/full/466016a.html.
    [39] MAKOTO Y. Asteroid exploration mission"Hayabusa2[C]//11th Symposium on Space Science. Japanese:11th Symposium on Space Science, 2011.
    [40] ZOU X D, LI C L, LIU JJ, et al. The preliminary analysis of the 4179 Toutatis snapshots of the Chang'E-2 flyby[J]. Icarus, 2014, 229:348-354.
    [41] JPL NASA. DAWN:Mission overview[EB/OL].[2019-04-21]. https://dawn.jpl.nasa.gov/mission/.
    [42] NASA. Dawn mission extended at Ceres[EB/OL].[2019-04-21]. https://www.jpl.nasa.gov/news/news.php?feature=6980.
    [43] NASA. Explorers and heliophysics projects division. OSIRIS-REx factsheet[R]. USA:NASA, 2011.
    [44] BOTTKE J, WILLIAM F, Et al. The Yarkovsky and YORP effects:implications for Asteroid dynamics[J]. Annu. Rev. Earth Planet. Sci, 2006. 34:157-191.
    [45] WAYNE H. Fitting selected random planetary systems to Titius-Bode laws[J]. ICARUS, 1998, 135:549-557.
    [46] The meteoritical society. Meteoritical bulletin database[EB/OL].[2019-04-21]. https://www.lpi.usra.edu/meteor/metbull.php.
    [47] JEWITT D. The active Asteroids[EB/OL].[2019-04-21]. http://www2.ess.ucla.edu/~jewitt/mbc.html.
    [48] HENRY H H. Main-Belt Comets[EB/OL].[2019-04-21]. https://web.archive.org/web/20110806021852/http://www.ifa.hawaii.edu/~hsieh/mbcs.shtml.
    [49] JEWITT D, WEAVER H, MUTCHER M, et al. Hubble space telescope observations of main belt Comet (596) Scheila[J]. Astrophysical Journal Letters, 2011, 733, L4:234-239.
  • [1] 徐浩, 裴福俊, 蒋宁.  一种基于李群描述的深空探测器姿态估计方法 . 深空探测学报(中英文), 2020, 7(1): 102-108. doi: 10.15982/j.issn.2095-7777.2020.20171117002
    [2] 杨洪伟, 宝音贺西.  小行星附近制导与控制研究综述 . 深空探测学报(中英文), 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
    [3] 张荣桥, 黄江川, 赫荣伟, 耿言, 孟林智.  小行星探测发展综述 . 深空探测学报(中英文), 2019, 6(5): 417-423,455. doi: 10.15982/j.issn.2095-7777.2019.05.002
    [4] 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明.  深空探测器自主控制技术综述 . 深空探测学报(中英文), 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
    [5] 逯运通, 张正峰, 傅子敬, 张旭辉.  一种深空粒子采样返回探测器构型设想 . 深空探测学报(中英文), 2019, 6(1): 96-102. doi: 10.15982/j.issn.2095-7777.2019.01.014
    [6] 李宗良, 高俊, 刘国西, 周成, 汤章阳, 邹达人.  小行星探测电推进系统方案研究 . 深空探测学报(中英文), 2018, 5(4): 347-353. doi: 10.15982/j.issn.2095-7777.2018.04.004
    [7] 杨甲森, 刘明洁, 陈托, 智佳, 张华伟, 王炜, 陈志敏.  中国首次火星探测任务有效载荷地面综合测试系统设计 . 深空探测学报(中英文), 2018, 5(5): 442-449. doi: 10.15982/j.issn.2095-7777.2018.05.006
    [8] 李春来, 刘建军, 耿言, 曹晋滨, 张铁龙, 方广有, 杨建峰, 舒嵘, 邹永廖, 林杨挺, 欧阳自远.  中国首次火星探测任务科学目标与有效载荷配置 . 深空探测学报(中英文), 2018, 5(5): 406-413. doi: 10.15982/j.issn.2095-7777.2018.05.002
    [9] 薛长斌, 周晴, 王雷, 耿浩, 刘鹏, 朱重阳, 张文璋, 徐欣锋, 李俊.  “嫦娥4号”任务有效载荷系统设计与实现 . 深空探测学报(中英文), 2017, 4(6): 515-521. doi: 10.15982/j.issn.2095-7777.2017.06.003
    [10] 朱安文, 刘飞标, 杜辉, 马世俊.  核动力深空探测器现状及发展研究 . 深空探测学报(中英文), 2017, 4(5): 405-416. doi: 10.15982/j.issn.2095-7777.2017.05.002
    [11] 朱岩, 白云飞, 王连国, 沈卫华, 张宝明, 王蔚, 周盛雨, 杜庆国, 陈春红.  中国首次火星探测工程有效载荷总体设计 . 深空探测学报(中英文), 2017, 4(6): 510-514,534. doi: 10.15982/j.issn.2095-7777.2017.06.002
    [12] 孙辉先, 李慧军, 张宝明, 周昌义, 薛长斌, 朱岩, 徐欣锋, 李俊, 杜庆国.  中国月球与深空探测有效载荷技术的成就与展望 . 深空探测学报(中英文), 2017, 4(6): 495-509. doi: 10.15982/j.issn.2095-7777.2017.06.001
    [13] 姜生元, 朴松杰, 张伟伟, 沈毅, 侯绪研, 全齐全, 邓宗全.  地外天体潜入式探测典型案例分析及展望 . 深空探测学报(中英文), 2016, 3(1): 68-76. doi: 10.15982/j.issn.2095-7777.2016.01.011
    [14] 于登云, 张玉花, 褚英志, 李昊, 王建炜, 杜冬.  深空探测器模块化结构动力学研究 . 深空探测学报(中英文), 2016, 3(3): 268-274. doi: 10.15982/j.issn.2095-7777.2016.03.011
    [15] 杨福全, 赵以德, 李娟, 耿海, 张天平, 周海燕.  主带小行星采样返回任务中的离子电推进应用方案 . 深空探测学报(中英文), 2015, 2(2): 168-173. doi: 10.15982/j.issn.2095-7777.2015.02.011
    [16] 王峰, 杨波, 胡存明, 吴昊, 费晓星.  小行星探测用双谱段相机设计 . 深空探测学报(中英文), 2015, 2(2): 174-179. doi: 10.15982/j.issn.2095-7777.2015.02.012
    [17] 周必磊, 陆希, 尤伟.  载人小行星探测的总体方案设想 . 深空探测学报(中英文), 2015, 2(1): 43-47. doi: 10.15982/j.issn.2095-7777.2015.01.006
    [18] 武长青, 徐瑞, 朱圣英.  基于对数势函数的深空探测器姿态规划与控制方法 . 深空探测学报(中英文), 2015, 2(4): 365-370. doi: 10.15982/j.issn.2095-7777.2015.04.011
    [19] 郑永春, 胡国平.  “新视野号”探测冥王星及柯伊伯带综述 . 深空探测学报(中英文), 2015, 2(1): 3-9. doi: 10.15982/j.issn.2095-7777.2015.01.001
    [20] 尚海滨, 崔平远, 熊旭, 武小宇.  载人小行星探测目标选择与轨道优化设计 . 深空探测学报(中英文), 2014, 1(1): 36-43.
  • 加载中
计量
  • 文章访问数:  613
  • HTML全文浏览量:  36
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-09
  • 修回日期:  2018-03-21
  • 刊出日期:  2019-10-01

小行星探测科学目标进展与展望

doi: 10.15982/j.issn.2095-7777.2019.05.003

摘要: 由于较好地保留了太阳系早期形成和演化历史的遗迹,小行星,尤其是近地小行星,已成为国际深空探测领域的研究热点。介绍了小行星的定义、分类和主要探测方式,指出目前小行星探测已进入空间探测的新时代;总结了国际小行星探测的现状,包括已实施和正在实施的小行星探测任务的科学目标、科学载荷配置,以及获取的主要科学数据等;探讨了未来小行星探测的发展趋势和主要科学问题,并对我国未来自主小行星探测任务科学目标的制定进行了展望。

English Abstract

李春来, 刘建军, 严韦, 封剑青, 任鑫, 刘斌. 小行星探测科学目标进展与展望[J]. 深空探测学报(中英文), 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
引用本文: 李春来, 刘建军, 严韦, 封剑青, 任鑫, 刘斌. 小行星探测科学目标进展与展望[J]. 深空探测学报(中英文), 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
LI Chunlai, LIU Jianjun, YAN Wei, FENG Jianqing, REN Xin, LIU Bin. Overview of Scientific Objectives for Minor Planets Exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
Citation: LI Chunlai, LIU Jianjun, YAN Wei, FENG Jianqing, REN Xin, LIU Bin. Overview of Scientific Objectives for Minor Planets Exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
参考文献 (49)

目录

    /

    返回文章
    返回