中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深空探测人工智能技术应用及发展建议

叶培建 孟林智 马继楠 王强 李莹 杜宇 王硕

叶培建, 孟林智, 马继楠, 王强, 李莹, 杜宇, 王硕. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6(4): 303-316,383. doi: 10.15982/j.issn.2095-7777.2019.04.001
引用本文: 叶培建, 孟林智, 马继楠, 王强, 李莹, 杜宇, 王硕. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6(4): 303-316,383. doi: 10.15982/j.issn.2095-7777.2019.04.001
YE Peijian, MENG Linzhi, MA Jinan, WANG Qiang, LI Ying, DU Yu, WANG Shuo. Suggestions on Artificial Intelligence Technology Application and Development in Deep Space Exploration[J]. Journal of Deep Space Exploration, 2019, 6(4): 303-316,383. doi: 10.15982/j.issn.2095-7777.2019.04.001
Citation: YE Peijian, MENG Linzhi, MA Jinan, WANG Qiang, LI Ying, DU Yu, WANG Shuo. Suggestions on Artificial Intelligence Technology Application and Development in Deep Space Exploration[J]. Journal of Deep Space Exploration, 2019, 6(4): 303-316,383. doi: 10.15982/j.issn.2095-7777.2019.04.001

深空探测人工智能技术应用及发展建议

doi: 10.15982/j.issn.2095-7777.2019.04.001

Suggestions on Artificial Intelligence Technology Application and Development in Deep Space Exploration

  • 摘要: 深空探测任务的探测目标距离地球越来越远,测控延时逐步增大,并且目标的先验知识有限,在遥远、未知、不确定环境下开展科学探索对探测器的自主性能需求日益强烈。随着人工智能技术的快速发展并逐步实用,在深空探测领域中应用人工智能技术提高和改进航天器自主性也将成为必须和可能。简要介绍了人工智能技术的发展历程,分析了航天领域中人工智能技术的应用实例,重点结合规划的深空探测任务特点和应用场景,梳理分析了各具体任务对人工智能技术应用的潜在需求,并提出了对深空探测人工智能技术应用的一些看法和发展建议。
  • [1] 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018, 478(10):6-12. YE P J, ZOU L Y, WANG D Y, et al. Development and prospect of Chinese deep space exploration[J]. Space International, 2018, 478(10):6-12.
    [2] 中华人民共和国国务院新闻办公室.《2016中国的航天》 白皮书[EB/OL].(2016-12-27)[2019-7-2]. http://www.scio.gov.cn/ztk/dtzt/34102/35723/35727/Document/1537102/1537102.htm.
    [3] CHEN X J. The Evolution of computing:alphago[J]. Computing in Science and Engineering, 2016, 18(4):4-7.
    [4] BEIKER S. History and status of automated driving in the United States[M]. Switzerland:Springer, Cham, 2014.
    [5] LUO J, YAN B, WOOD K. Inno GPS for data-driven exploration of design opportunities and directions:thecase of google driverless car project[J]. Social Science Electronic Publishing, 2017, 139(11):111416.
    [6] 孟庆春, 齐勇, 张淑军, 等. 智能机器人及其发展[J]. 中国海洋大学学报(自然科学版), 2004, 34(5):831-838. MENG Q C, QI Y, ZHANG S J, et al. Intelligent robots and development[J]. Periodical of Ocean University of China, 2004, 34(5):831-838.
    [7] 辰序. 芯片植入大脑思想控制电脑[J]. 科学之友旬刊, 2004(11):22-22.
    [8] SHALLUEC J, VANDERBURG A. Identifying exoplanets with deep learning:a five-planet resonant chain around Kepler-80 and an eighth planet around Kepler-90[J]. Astronomical Journal. 2018, 155(2):1-21.
    [9] ESTLIN T, FISHER F, MUTZ D, et al. Automated planning for a deep space communications station[C]//Proceedings 1999 IEEE International Conference on Robotics and Automation. Detroi:IEEE, 1999.
    [10] UNGAR S G,PEARLMAN J S,MENDENHALL J A,et al. Overview of the Earth observing one(Eo-1) mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1149-1159.
    [11] BURNS R, MCLAUGHLIN C A, LEITNER J, et al. TechSat 21:formation design, control, and simulation[C]//Aerospace Conference. Big Sky, MT:IEEE, 2002.
    [12] 王大轶, 孟林智, 叶培建, 等. 深空探测器的自主运行技术研究[J]. 航天器工程, 2018, 27(6):1-10. WANG D Y, MENG L Z, YE P J, et al. Research of autonomous operation technology for deep space probe[J]. Spacecraft Engineering, 2018, 27(6):1-10.
    [13] BERNARD D, DOYLE R, RIEDEL E, et al. Autonomy and software technology on NASA's Deep Space One[J]. IEEE Intelligent Systems and their Applications, 1999, 14(3):10-15.
    [14] JOHNSON A, CHENG Y, MONTGOMERY J, et al. Realtime terrain relative navigation test results from a relative environment for Mars landing[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Kissimmee:AIAA, 2015.
    [15] LAURETTAD S. Application of machine-learning algorithms for onboard asteroid shape model determination[R]. CA, USA:JPL, 2018.
    [16] 叶培建, 黄江川, 孙泽洲, 等. 中国月球探测器发展历程和经验初探[J]. 中国科学:技术科学, 2014, 44(6):543-558. YE P J, HUANG J C, SUN Z Z, et al. The process and experience in the development of Chinese lunar probe[J]. Scientia Sinica Technological, 2014, 44(6):543-558.
    [17] 叶培建, 孙泽洲, 张熇, 等. 嫦娥四号探测器系统任务设计[J]. 中国科学:技术科学, 2019, 49(2):6-19. YE P J, SUN Z Z, ZHANG H, et al. Mission design of Chang' e-4 probe system[J]. Sci Sin Tech, 2019, 49(2):6-19.
    [18] CASTANO R, JUDD M, ESTLIN T, et al. Autonomous onboard traverse science system[C]//Proceedings of the 2004 IEEE Aerospace Conference. Big Sky, Montana:IEEE, 2004.
    [19] ESTLIN T A,BORNSTEIN B J,GAINES D M,et al. AEGIS automated science targeting for the MER Opportunity rover[J]. ACM Transactions on Intelligent Systems & Technology, 2012, 3(3):1-19.
    [20] CURTIS S A, TRUSZKOWSKI W F, RILEE M L, et al. ANTS for the human exploration and development of space[C]//In Proceeding IEEE Aerospace Conference. Big Sky, Montana:IEEE, 2003.
    [21] CLARK P E, CURTIS S A, RILEE M L. ANTS:applying a new paradigm to lunar and planetary exploration[C]//In Proceeding Solar System Remote Sensing Symposium.Pittsburgh, Pennsylvania:Solar System Remote Sensing, 2002.
    [22] WORK O R, BRIMLEY S. 20YY:preparing for war in the robotic age[R]. USA:Center for a New American Security, 2014.
    [23] BEN S. The role of autonomy in space exploration, manager, NASA report, autonomy technology program[R]. USA:NASA, 2001.
    [24] RANDOM C,SCHUH V S. Lunar and Mars exploration:the autonomy factor[R]. USA:2008 SAE International, 2008.
    [25] FONG T. Autonomous system NASA capability overview[R].USA:NASA, 2018.
    [26] NASA. Technology Roadmaps[EB/OL].(2015)[2019-7-2]. https://www.nasa.gov/offices/oct/home/roadmaps/index.html.
    [27] 叶培建, 果琳丽, 张志贤, 等. 有人参与深空探测任务面临的风险和技术挑战[J]. 载人航天, 2016, 22(2):143-149. YE P J, GUO L L, ZHANG Z X, et al. Risks and challenges of manned deep space exploration mission[J]. Manned Spaceflight, 2016, 22(2):143-149.
    [28] 孟林智, 董捷, 许映乔, 等. 无人火星取样返回任务关键环节分析[J]. 深空探测学报, 2016, 3(2):114-120. MENG L Z, DONG J, XU Y Q, et al. Analysis of key technologies for unmanned Mars sample return mission[J]. Journal of Deep Space Exploration, 2016, 3(2):114-120.
    [29] YE P J,SUN Z Z,RAO W,et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China Technological Sciences, 2017, 60(5):649-657.
    [30] 饶炜, 孙泽洲, 孟林智, 等. 火星着陆探测任务关键环节技术途径分析[J]. 深空探测学报, 2016, 3(2):121-128. RAO W, SUN Z Z, MENG L Z, et al. Analysis and design for the Mars entry, descent and landing mission[J]. Journal of Deep Space Exploration, 2016, 3(2):121-128.
    [31] 吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学:信息科学, 2019(49):1-16. WU W R, YU D Y, HUANG J C, et al. Exploring the solar system boundary[J]. Science Sinica Information, 2019(49):1-16.
    [32] LORENZ A D,OLDS R,MAY A,et al. Lessons learned from OSIRIS-REx autonomous navigation using natural feature tracking[C]//2017 IEEE Aerospace Conference. Big Sky, MT, USA:IEEE, 2017.
    [33] MARIO C, DEBRUNNER C. Robustness and performance impacts of optical-based feature tracking to OSIRIS-Rex[C]//39th Annual AAS Guidance and Control Conference. USA:AIAA, 2016.
    [34] GASKELL W R.Optical navigation near small bodies[J]. Spaceflight Mechanics, 2011(140):1705-1717.
    [35] United States Department of Defense. Unmanned systems integrated roadmap, FY2013-2038report[R]. USA:United States Department of Defense, 2013.
    [36] CURTIS A S, MICA J, NUTH J, et al. ANTS(autonomous nanotechnology swarm):an artificial intelligence approach to asteroid belt resource exploration[C]//In Proceedings of International Astronautical Federation, 51st Congress.[S.l]:IAF, 2000.
    [37] TRUSZKOWSKI F W, RASH L J, ROUFFA C, et al. Asteroid exploration with autonomic system[C]//In Proceedings of 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems(ECBS), Work-shop on Engineering of Autonomic Systems(EASe). Brno:IEEE, 2004.
    [38] JONSSON K A, MORRIS A R, PEDERSEN L. Autonomy in space exploration:current capabilities and future challenges[C]//2007 IEEE Aerospace Conference. Big Sky, MT, USA:IEEE, 2007.
    [39] COCAUD C, KUBOTA T. Autonomous navigation near asteroids based on visual SLAM[C]//Proceedings of the 23rd international symposium on space flight dynamics. Pasadena, CA:JPL, 2012.
    [40] BIESIADECKI J J, MAIMONE W M. The Mars exploration rover surface mobility flight software:driving ambition[C]//2006 IEEE Aerospace Conference. Big Sky, MT, USA:IEEE, 2006.
  • [1] 罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞.  中国空间引力波探测“太极计划”及“太极1号”在轨测试 . 深空探测学报, 2020, 7(1): 3-10. doi: 10.15982/j.issn.2095-7777.2020.20191230001
    [2] 钟武烨, 赵守智, 郑剑平, 吕征, 解家春.  空间热离子能量转换技术发展综述 . 深空探测学报, 2020, 7(1): 47-60. doi: 10.15982/j.issn.2095-7777.2020.20200114001
    [3] 郑见杰, 杜园, 王炜娜, 罗广求, 刘治钢.  深空探测用锂离子蓄电池在轨管理策略研究 . 深空探测学报, 2020, 7(1): 81-86. doi: 10.15982/j.issn.2095-7777.2020.20191030001
    [4] 罗洪义, 牛厂磊, 吴胜娜, 李鑫, 唐显, 罗志福.  深空探测中的钚-238同位素电源 . 深空探测学报, 2020, 7(1): 61-72. doi: 10.15982/j.issn.2095-7777.2020.20191129001
    [5] 徐浩, 裴福俊, 蒋宁.  一种基于李群描述的深空探测器姿态估计方法 . 深空探测学报, 2020, 7(1): 102-108. doi: 10.15982/j.issn.2095-7777.2020.20171117002
    [6] 胡文军, 刘继忠, 唐玉华, 陈军红, 张玮, 张哲, 李上明, 胡绍全.  空间同位素热/电源安全性技术指标体系框架研究 . 深空探测学报, 2020, 7(1): 73-80. doi: 10.15982/j.issn.2095-7777.2020.20190911001
    [7] 王文强, 杨洪东, 杨广, 王佳禹, 吴庆, 顾春杰.  太阳电池阵深空探测适应性设计概论 . 深空探测学报, 2020, 7(1): 41-46. doi: 10.15982/j.issn.2095-7777.2020.20191101003
    [8] 牛厂磊, 罗志福, 雷英俊, 王文强, 郑见杰, 乔学荣, 罗洪义, 胡文军, 钟武烨.  深空探测先进电源技术综述 . 深空探测学报, 2020, 7(1): 24-34. doi: 10.15982/j.issn.2095-7777.2020.20200002
    [9] 乔学荣, 郭际, 米娟.  高比能量锂氟化碳电池在深空探测器上的应用试验研究 . 深空探测学报, 2020, 7(1): 87-92. doi: 10.15982/j.issn.2095-7777.2020.20191223001
    [10] 雷英俊, 朱立颖, 张文佳.  我国深空探测任务电源系统发展需求 . 深空探测学报, 2020, 7(1): 35-40. doi: 10.15982/j.issn.2095-7777.2020.20190712001
    [11] 于登云, 张哲, 泮斌峰, 刘传凯, 丁亮, 朱继宏, 高海波, 刘金国, 陈鹏.  深空探测人工智能技术研究与展望 . 深空探测学报, 2020, 7(1): 11-23. doi: 10.15982/j.issn.2095-7777.2020.20190916001
  • 加载中
计量
  • 文章访问数:  957
  • HTML全文浏览量:  0
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-01
  • 修回日期:  2019-07-28

深空探测人工智能技术应用及发展建议

doi: 10.15982/j.issn.2095-7777.2019.04.001

摘要: 深空探测任务的探测目标距离地球越来越远,测控延时逐步增大,并且目标的先验知识有限,在遥远、未知、不确定环境下开展科学探索对探测器的自主性能需求日益强烈。随着人工智能技术的快速发展并逐步实用,在深空探测领域中应用人工智能技术提高和改进航天器自主性也将成为必须和可能。简要介绍了人工智能技术的发展历程,分析了航天领域中人工智能技术的应用实例,重点结合规划的深空探测任务特点和应用场景,梳理分析了各具体任务对人工智能技术应用的潜在需求,并提出了对深空探测人工智能技术应用的一些看法和发展建议。

English Abstract

叶培建, 孟林智, 马继楠, 王强, 李莹, 杜宇, 王硕. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6(4): 303-316,383. doi: 10.15982/j.issn.2095-7777.2019.04.001
引用本文: 叶培建, 孟林智, 马继楠, 王强, 李莹, 杜宇, 王硕. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6(4): 303-316,383. doi: 10.15982/j.issn.2095-7777.2019.04.001
YE Peijian, MENG Linzhi, MA Jinan, WANG Qiang, LI Ying, DU Yu, WANG Shuo. Suggestions on Artificial Intelligence Technology Application and Development in Deep Space Exploration[J]. Journal of Deep Space Exploration, 2019, 6(4): 303-316,383. doi: 10.15982/j.issn.2095-7777.2019.04.001
Citation: YE Peijian, MENG Linzhi, MA Jinan, WANG Qiang, LI Ying, DU Yu, WANG Shuo. Suggestions on Artificial Intelligence Technology Application and Development in Deep Space Exploration[J]. Journal of Deep Space Exploration, 2019, 6(4): 303-316,383. doi: 10.15982/j.issn.2095-7777.2019.04.001
参考文献 (40)

目录

    /

    返回文章
    返回