中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤射频稳相传输技术试验研究

刘友永 马文起 陈少卿 李晶

刘友永, 马文起, 陈少卿, 李晶. 光纤射频稳相传输技术试验研究[J]. 深空探测学报, 2018, 5(2): 182-187. doi: 10.15982/j.issn.2095-7777.2018.02.011
引用本文: 刘友永, 马文起, 陈少卿, 李晶. 光纤射频稳相传输技术试验研究[J]. 深空探测学报, 2018, 5(2): 182-187. doi: 10.15982/j.issn.2095-7777.2018.02.011
LIU Youyong, MA Wenqi, CHEN Shaoqing, LI Jing. Experimental Research of Phase-Stabilized Transfer of RF Signal over Optical Fiber[J]. Journal of Deep Space Exploration, 2018, 5(2): 182-187. doi: 10.15982/j.issn.2095-7777.2018.02.011
Citation: LIU Youyong, MA Wenqi, CHEN Shaoqing, LI Jing. Experimental Research of Phase-Stabilized Transfer of RF Signal over Optical Fiber[J]. Journal of Deep Space Exploration, 2018, 5(2): 182-187. doi: 10.15982/j.issn.2095-7777.2018.02.011

光纤射频稳相传输技术试验研究

doi: 10.15982/j.issn.2095-7777.2018.02.011

Experimental Research of Phase-Stabilized Transfer of RF Signal over Optical Fiber

  • 摘要: 针对上行天线组阵技术对高稳定度射频信号的需求,提出了一种适用于上行天线组阵技术的光纤稳相传输试验方案。基于光纤延迟线的闭环稳相传输系统通过双向传输侧音信号,对光纤链路相位抖动进行监测并闭环补偿。阐述了试验原理和方法,搭建了桌面演示试验系统。试验结果表明,1 km光纤温度变化达到40 ℃时,射频信号通过该系统后相位抖动不超过1°,从而说明利用该技术可以有效补偿光纤射频传输系统的相位抖动,满足上行天线组阵技术对高稳定度射频信号的需求。
  • [1] 徐茂格. 深空上行发射天线组阵技术分析[J]. 电视技术,2009,49(6):49-52. XU M G. Analysis of deep space network uplink arrays technology[J]. Telecommunication Engineering,2009,49(6):49-52.
    [2] 姚飞,詹亚峰,陆建华. 深空通信天线上行链路性能[J]. 清华大学学报(自然科学版),2010,52(9):1255-1259. YAO F,ZHAN Y F,LU J H. Performance of an uplink antenna array for deep space communications[J]. Journal of Tsinghua University(Science and Technology),2010,52(9):1255-1259.
    [3] FARAMAZ D. Uplink arrays for the deep space network[J]. Proceedings of the IEEE,2007,95(10):1923-1930.
    [4] HUANG S,CALHOUN M,TJOELKER R L. Optical links and RF distribution for antenna arrays[C]//International Frequency Control Symposium and Exposition,2006 IEEE. Miami,FL,USA:IEEE,2006.
    [5] 朱陵凤,李超,韩春好,等.无线电时间比对中的时标偏差影响分析[J]. 无线电通信技术,2016,42(2):66-69. ZHU L F,LI C,HAN C H,et al. Influence analysis of timescale deviation on radio time transfer[J]. Radio Communications Technology,2016,42(2):66-69.
    [6] MALCOLM C,HUANG S,TJOELKER R L. Stable photonic links for frequency and time transfer in the deep-space network and antenna arrays[J]. Proceedings of the IEEE,2007,95(10):556-563.
    [7] MASAKI A,MICBITO I,YASUHISA F,et al. Time and frequency transfer and dissemination methods using optical fiber network[C]//Frequency Control Symposium and Exposition,Proceedings of the 2005 IEEE International. Vancouver,BC,Canada:IEEE,2005.
    [8] MASAKI A,MICHITO I,YASUHISA F,et al. Simple time and frequency dissemination method using optical fiber network[J]. IEEE,2008,57(10):878-883.
    [9] MASAKI A,MICHITO I,YASUHISA F,et al. System for precise dissemination of frequency standard via optical fiber[J]. Electronics and Communications in Japan,2012,95(3):45-54.
    [10] GIUSEPPE M,RADAN S,M ARGOLIS S H,et al. High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser[J]. Optics Letters,2011,36(4):511-513.
    [11] LOPEZ O,MY-KLEIN A,LOURS M,et al. High-resolution microwave frequency dissemination on an 86 km urban optical link[J]. Applied Physics B Lasers & Optics,2010,98(4):723-727.
    [12] WANG B,GAO C,CHEN W L,et al. Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level[J]. Scientific Reports,2012,2(2):556.
    [13] 张帆. 光纤时间频率传输系统中时延抖动的测量与补偿技术研究[D]. 北京:北京大学,2009. ZHANG F. Research on timing jitter measurement and compensation technology in time-frequency transmission system[D]. Beijing:Peking University,2009.
    [14] 李得龙,卢麟,张宝富,等. 基于相位波动远端补偿的微波频率光纤传递新方法[J]. 光学学报,2014,34(7):28-32. LI D L,LU L,ZHANG B F,et al. New microwave frequency dissemination method over optical fiber based on phase fluctuation compensated at remote sites[J]. Acta Optica Sinica,2014,34(7):28-32.
    [15] 梁双有,张健康,李立中. 光纤时间传输及相位补偿[J]. 时间频率学报,2008,31(2):147-156. LIANG S Y,ZHANG J K,LI L Z. Time-frequency transfer via optic fiber and phase compensation[J]. Journal of Time and Frequency,2008,31(2):147-156.
    [16] LIU Q,CHEN W,XU D,et al. Simultaneous frequency transfer and time synchronization over a cascaded fiber link of 230 km[J]. Chinese Journal of Lasers,2016,43(3):0305006.
    [17] 卢麟,吴传信,经继松,等. 原子频标光纤长距离传递的稳定度损失分析[J]. 解放军理工大学学报(自然科学版),2013,14(2):120-123. LU L,WU C X,JING J S,et al. Analyses of stability loss for frequency transferred by long distance fibre[J]. Journal of PLA University of Science and Technology(Natural Science Edition),2013,14(2):120-123.
    [18] 马文起,吴智斌,李晶,等. 高稳定度光纤时频相干传输技术研究[J]. 无线电工程,2015,45(11):44-47. MA W Q,WU Z B,LI J,et al. Research on high-stability time and frequency coherent transmission with optical fiber[J]. Radio Engineering,2015,45(11):44-47.
  • [1] 王文强, 杨洪东, 杨广, 王佳禹, 吴庆, 顾春杰.  太阳电池阵深空探测适应性设计概论 . 深空探测学报, 2020, 7(1): 41-46. doi: 10.15982/j.issn.2095-7777.2020.20191101003
  • 加载中
计量
  • 文章访问数:  1398
  • HTML全文浏览量:  0
  • PDF下载量:  719
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-20
  • 修回日期:  2018-03-31

光纤射频稳相传输技术试验研究

doi: 10.15982/j.issn.2095-7777.2018.02.011

摘要: 针对上行天线组阵技术对高稳定度射频信号的需求,提出了一种适用于上行天线组阵技术的光纤稳相传输试验方案。基于光纤延迟线的闭环稳相传输系统通过双向传输侧音信号,对光纤链路相位抖动进行监测并闭环补偿。阐述了试验原理和方法,搭建了桌面演示试验系统。试验结果表明,1 km光纤温度变化达到40 ℃时,射频信号通过该系统后相位抖动不超过1°,从而说明利用该技术可以有效补偿光纤射频传输系统的相位抖动,满足上行天线组阵技术对高稳定度射频信号的需求。

English Abstract

刘友永, 马文起, 陈少卿, 李晶. 光纤射频稳相传输技术试验研究[J]. 深空探测学报, 2018, 5(2): 182-187. doi: 10.15982/j.issn.2095-7777.2018.02.011
引用本文: 刘友永, 马文起, 陈少卿, 李晶. 光纤射频稳相传输技术试验研究[J]. 深空探测学报, 2018, 5(2): 182-187. doi: 10.15982/j.issn.2095-7777.2018.02.011
LIU Youyong, MA Wenqi, CHEN Shaoqing, LI Jing. Experimental Research of Phase-Stabilized Transfer of RF Signal over Optical Fiber[J]. Journal of Deep Space Exploration, 2018, 5(2): 182-187. doi: 10.15982/j.issn.2095-7777.2018.02.011
Citation: LIU Youyong, MA Wenqi, CHEN Shaoqing, LI Jing. Experimental Research of Phase-Stabilized Transfer of RF Signal over Optical Fiber[J]. Journal of Deep Space Exploration, 2018, 5(2): 182-187. doi: 10.15982/j.issn.2095-7777.2018.02.011
参考文献 (18)

目录

    /

    返回文章
    返回