中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微阴极电弧推力器研究进展

耿金越 熊子昌 龙军 沈岩 刘旭辉 陈君

耿金越, 熊子昌, 龙军, 沈岩, 刘旭辉, 陈君. 微阴极电弧推力器研究进展[J]. 深空探测学报, 2017, 4(3): 212-218,231. doi: 10.15982/j.issn.2095-7777.2017.03.002
引用本文: 耿金越, 熊子昌, 龙军, 沈岩, 刘旭辉, 陈君. 微阴极电弧推力器研究进展[J]. 深空探测学报, 2017, 4(3): 212-218,231. doi: 10.15982/j.issn.2095-7777.2017.03.002
GENG Jinyue, XIONG Zichang, LONG Jun, SHEN Yan, LIU Xuhui, CHEN Jun. The Research Progress in the Micro-Cathode Arc Thruster[J]. Journal of Deep Space Exploration, 2017, 4(3): 212-218,231. doi: 10.15982/j.issn.2095-7777.2017.03.002
Citation: GENG Jinyue, XIONG Zichang, LONG Jun, SHEN Yan, LIU Xuhui, CHEN Jun. The Research Progress in the Micro-Cathode Arc Thruster[J]. Journal of Deep Space Exploration, 2017, 4(3): 212-218,231. doi: 10.15982/j.issn.2095-7777.2017.03.002

微阴极电弧推力器研究进展

doi: 10.15982/j.issn.2095-7777.2017.03.002
基金项目: 载人航天预研支持项目(050303)

The Research Progress in the Micro-Cathode Arc Thruster

  • 摘要: 介绍一种适用于微纳卫星的新型微电推进方式——微阴极电弧推力器,其利用真空条件下放电电弧烧蚀阴极材料产生较高电离度的高速等离子体喷出产生推力,并利用外加磁场聚焦等离子体以减小羽流扩散角、提高比冲。总结了国外相关机构大量的研究工作,并实现了在轨验证。北京控制工程研究所及其研究团队已攻克了阴极工质均匀烧蚀、低电压放电击穿、磁场设计等关键技术,完成原理样机点火验证工作,并采用实验手段研究磁场对推力器影响;采用PIC/MCC方法开展数值仿真,获得推力器内部及羽流区相关参数分布,对其工作过程及工作机理开展研究,为工程应用奠定了基础。
  • [1] Zhuang T,Shashurin A,Denz T,et al. Performance characteristics of micro-cathode arc thruster[J]. Journal of Propulsion and Power,2014,30(1):29-34.
    [2] Keidar M,Zhuang T,Shashurin A,et al. Electric propulsion for small satellites[J]. Plasma Physics and Controlled Fusion,2015,57(1):14005-14014.
    [3] Vail P,Pancottiy A. Performance characterization of micro-cathode arc thruster(μCAT)[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego,California:AIAA,2011.
    [4] US Naval Academy Satellite Lab,George Washington University. BRICSat-P(BRICSat 1/NO83/Naval Academy-OSCAR 83).[EB/OL]. (2015-05-20)[2017-03-20]. http://space.skyrocket.de/doc_sdat/bricsat-p.htm.
    [5] Plyutto A A,Ryzhdov V N,Kapin A T. High speed plasma streams in vacuum arcs[J]. Soviet Physics JETP,1965,20(2):328-337.
    [6] Gilmour A S. Concerning the feasibility of a vacuum arc thruster[C]//5th Electric Propulsion Conference. San Diego,California:AIAA,1966.
    [7] Gilmour A S,Clark R J,Veron H. Pulsed vacuum-arc microthrustors[C]//AIAA Electric Propulsion and Plasma Dynamics Conference. Colorado:AIAA,1967.
    [8] Dorodnov A M. Technical applications of plasma accelerators[J]. Sov. Phys. Tech. Phys.,1978,23(9):1858-1870.
    [9] Anders A,MacGill R A,McVeigh T A. Efficient,compact power supply for repetitively pulsed,"triggerless" cathodic arcs[J]. Review of Scientific Instruments,1999,70(12):4532-4535.
    [10] Anders A,Schein J,Qi N. Pulsed vacuum-arc ion source operated with a "triggerless" arc initiation method[J]. Review of Scientific Instruments,2000,71(2):827-829.
    [11] Qi N,Schein J,Binder R,et al. Compact vacuum arc micro-thruster for small satellite systems[J]. Pulsed Power Plasma Science,2013,98(C6):588.
    [12] Schein J,Qi N,Binder R,et al. Low mass vacuum arc thruster system for station keeping missions[C]//27th International Electric Propulsion Conference. Pasadena:California the Electric Rocket Propulsion Society,2001.
    [13] Schein J,Qi N,Binder R,et al. Inductive energy storage driven vacuum arc thruster[J]. Review of Scientific Instruments,2002,73(2):925-927.
    [14] Polk J E,Sekerak M J,Ziemer J K,et al. A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance[J]. IEEE Transactions on Plasma Science,2008,36(5):2167-2179.
    [15] Zhuang T,Shashurin A,Chiu D,et al. Micro-cathode arc thruster(μCAT)with thrust vector control[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta,Georgia,USA:AIAA,2012.
    [16] Zhuang T,Shashurin A,Beilis I,et al. Ion velocities in a micro-cathode arc thruster[J]. Physics of Plasmas,2012,19(6):661-671.
    [17] Chiu D,Lukas J,Teal G,et al. Development towards a bi-modal micro-cathode arc thruster(μCAT)[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose,CA:AIAA,2013.
    [18] Zhuang T,Shashuriny A,Teel G,et al. Co-axial micro-cathode arc thruster(CA-μCAT) performance characterization[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego,California:AIAA,2011.
    [19] Zhuang T,Shashurin A,Keidar M. Micro-cathode thruster(μCT)plume characterization[J]. IEEE Transactions on Plasma Science,2011,39(11):2936-2937.
    [20] Zhuang T,Shashurin A,Haque S. Performance characterization of the micro-cathode arc thruster and propulsion system for space applications[J]. Breastfeeding Medicine the Official Journal of the Academy of Breastfeeding Medicine,2013,7(5):337-342.
    [21] Keidar M,Haque S,Zhuang T S,et al. Micro-cathode arc thruster for phonesat propulsion[C]//27th Annual AIAA/USU Conference on Small Satellites. USA:AIAA,2013.
    [22] Brieda L,Zhuang T,Keidar M. Towards near plume modeling of a micro cathode arc thruster[C]//49th AIAA Joint Propulsion Conference and Exhibit. San Jose,USA:AIAA,2013.
    [23] 耿金越,刘旭辉,陈君,等. 一种适用于微纳卫星姿轨控的新型微推进模块——微弧阴极放电推力器[C]//第十一届中国电推进技术学术研讨会. 北京:中国宇航学会电推进专委会,2015. Geng J Y,Liu X H,Chen J,et al. A new micro-propulsion module for the attitude and orbit control of the micro and nano-satellites[C]//11th China Electric Propulsion Conference. Beijing:Chinese Astronautics Electric Propulsion Committee,2015.
    [24] 耿金越,龙军,刘旭辉,等. 微纳卫星用脉冲式微型电推进技术研究[C]//空间安全与维护技术专业组2016年学术研讨会. 北京:宇航学会,2016. Geng J Y,Long J,Liu X H,et al. Research on the pulsed micro electric propulsion for the micro and nano-satellites[C]//Symposium on Space Security and Maintenance Technique. Beijing:Chinese Society of Astronautics,2016.
    [25] 熊子昌,耿金越,王海兴. 同轴微阴极电弧推力器的粒子网格法数值模拟[C]//第十二届中国电推进技术学术研讨会. 哈尔滨:哈尔滨工业大学,2016. Xiong Z C,Geng J Y,Wang H X. Particle-in-cell simulation of a co-axial micro cathode arc thruster[C]//12th China Electric Propulsion Conference. Harbin:HIT,2016.
  • [1] 郑见杰, 杜园, 王炜娜, 罗广求, 刘治钢.  深空探测用锂离子蓄电池在轨管理策略研究 . 深空探测学报, 2020, 7(1): 81-86. doi: 10.15982/j.issn.2095-7777.2020.20191030001
    [2] 于登云, 张哲, 泮斌峰, 刘传凯, 丁亮, 朱继宏, 高海波, 刘金国, 陈鹏.  深空探测人工智能技术研究与展望 . 深空探测学报, 2020, 7(1): 11-23. doi: 10.15982/j.issn.2095-7777.2020.20190916001
    [3] 胡文军, 刘继忠, 唐玉华, 陈军红, 张玮, 张哲, 李上明, 胡绍全.  空间同位素热/电源安全性技术指标体系框架研究 . 深空探测学报, 2020, 7(1): 73-80. doi: 10.15982/j.issn.2095-7777.2020.20190911001
    [4] 徐浩, 裴福俊, 蒋宁.  一种基于李群描述的深空探测器姿态估计方法 . 深空探测学报, 2020, 7(1): 102-108. doi: 10.15982/j.issn.2095-7777.2020.20171117002
    [5] 罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞.  中国空间引力波探测“太极计划”及“太极1号”在轨测试 . 深空探测学报, 2020, 7(1): 3-10. doi: 10.15982/j.issn.2095-7777.2020.20191230001
    [6] 乔学荣, 郭际, 米娟.  高比能量锂氟化碳电池在深空探测器上的应用试验研究 . 深空探测学报, 2020, 7(1): 87-92. doi: 10.15982/j.issn.2095-7777.2020.20191223001
  • 加载中
计量
  • 文章访问数:  2588
  • HTML全文浏览量:  0
  • PDF下载量:  1044
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-30
  • 修回日期:  2017-05-20

微阴极电弧推力器研究进展

doi: 10.15982/j.issn.2095-7777.2017.03.002
    基金项目:  载人航天预研支持项目(050303)

摘要: 介绍一种适用于微纳卫星的新型微电推进方式——微阴极电弧推力器,其利用真空条件下放电电弧烧蚀阴极材料产生较高电离度的高速等离子体喷出产生推力,并利用外加磁场聚焦等离子体以减小羽流扩散角、提高比冲。总结了国外相关机构大量的研究工作,并实现了在轨验证。北京控制工程研究所及其研究团队已攻克了阴极工质均匀烧蚀、低电压放电击穿、磁场设计等关键技术,完成原理样机点火验证工作,并采用实验手段研究磁场对推力器影响;采用PIC/MCC方法开展数值仿真,获得推力器内部及羽流区相关参数分布,对其工作过程及工作机理开展研究,为工程应用奠定了基础。

English Abstract

耿金越, 熊子昌, 龙军, 沈岩, 刘旭辉, 陈君. 微阴极电弧推力器研究进展[J]. 深空探测学报, 2017, 4(3): 212-218,231. doi: 10.15982/j.issn.2095-7777.2017.03.002
引用本文: 耿金越, 熊子昌, 龙军, 沈岩, 刘旭辉, 陈君. 微阴极电弧推力器研究进展[J]. 深空探测学报, 2017, 4(3): 212-218,231. doi: 10.15982/j.issn.2095-7777.2017.03.002
GENG Jinyue, XIONG Zichang, LONG Jun, SHEN Yan, LIU Xuhui, CHEN Jun. The Research Progress in the Micro-Cathode Arc Thruster[J]. Journal of Deep Space Exploration, 2017, 4(3): 212-218,231. doi: 10.15982/j.issn.2095-7777.2017.03.002
Citation: GENG Jinyue, XIONG Zichang, LONG Jun, SHEN Yan, LIU Xuhui, CHEN Jun. The Research Progress in the Micro-Cathode Arc Thruster[J]. Journal of Deep Space Exploration, 2017, 4(3): 212-218,231. doi: 10.15982/j.issn.2095-7777.2017.03.002
参考文献 (25)

目录

    /

    返回文章
    返回