中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潜在威胁小行星碰撞防御的计算与分析

姜宇 程彬 宝音贺西 李恒年

姜宇, 程彬, 宝音贺西, 李恒年. 潜在威胁小行星碰撞防御的计算与分析[J]. 深空探测学报, 2017, 4(2): 190-195. doi: 10.15982/j.issn.2095-7777.2017.02.014
引用本文: 姜宇, 程彬, 宝音贺西, 李恒年. 潜在威胁小行星碰撞防御的计算与分析[J]. 深空探测学报, 2017, 4(2): 190-195. doi: 10.15982/j.issn.2095-7777.2017.02.014
JIANG Yu, CHEN Bin, BAOYIN Hexi, LI Hengnian. Calculation and Analysis of the Impact Defense to the Potentially Hazardous Asteroids[J]. Journal of Deep Space Exploration, 2017, 4(2): 190-195. doi: 10.15982/j.issn.2095-7777.2017.02.014
Citation: JIANG Yu, CHEN Bin, BAOYIN Hexi, LI Hengnian. Calculation and Analysis of the Impact Defense to the Potentially Hazardous Asteroids[J]. Journal of Deep Space Exploration, 2017, 4(2): 190-195. doi: 10.15982/j.issn.2095-7777.2017.02.014

潜在威胁小行星碰撞防御的计算与分析

doi: 10.15982/j.issn.2095-7777.2017.02.014
基金项目: 国家自然科学基金资助项目(11372150)

Calculation and Analysis of the Impact Defense to the Potentially Hazardous Asteroids

  • 摘要: 研究了采用碰撞的方式进行小行星防御的动力学问题。采用多面体模型来建立小行星的外形模型,以碎石堆模型来建立小行星的结构模型,计算了小行星受到与其密度和材质相同的球体高速碰撞过程和碰撞后的碎石分布。计算过程在考虑了小行星与碰撞球体的接触形变以及小行星内部组成碎石堆的接触形变条件下,计算了碎石堆内部的相互引力、法向接触力、切向静摩擦力、切向动摩擦力和滚动摩擦力矩。以小行星101955 Bennu(中文名贝努)为对象计算了潜在威胁小行星的碰撞防御过程的动力学行为。结果显示:采用高速碰撞的方法进行小行星防御可以有效地将小行星撞成大量碎小的石块,且该方法具有核爆的方法不可比拟的优势,即对空间环境无污染。
  • [1] Quarta A A,Mengali G. Electric sail missions to potentially hazardous asteroids[J]. Acta Astronautica,2010,66(9):1506-1519.
    [2] Chesley S R,Farnocchia D,Nolan M C,et al. Orbit and bulk density of the OSIRIS-REx target Asteroid(101955) Bennu[J]. Icarus,2014,235(1):5-22.
    [3] Saito T,Kaiho K,Abe A,et al. Hypervelocity impact of asteroid/comet on the oceanic crust of the earth[J]. International Journal of Impact Engineering,2008,35:1770-1777.
    [4] Vardaxis G,Sherman P,Wie B. Impact risk assessment and planetary defense mission planning for asteroid 2015 PDC[J]. Acta Astronautica,2016,122:307-323.
    [5] Michel P,Cheng A,Küppers M,et al. Science case for the Asteroid Impact Mission(AIM):a component of the Asteroid Impact & Deflection Assessment(AIDA) mission[J]. Advances in Space Research,2016,57(12):2529-2547.
    [6] Cheng F A,Atchison J,Kantsiper B,et al. Asteroid impact and deflection assessment mission[J]. Acta Astronautica,2015,115:262-269.
    [7] Lomov I,Herbold E B,Antoun T H,et al. Influence of mechanical properties relevant to standoff deflection of hazardous asteroids[J]. Procedia Engineering,2013,58(4):251-259.
    [8] Koenig J D,Chyba C F. Impact deflection of potentially hazardous asteroids using current launch vehicles[J]. Science & Global Security,2007,15(1):57-83.
    [9] Jiang Y,Baoyin H X,Li H N. Periodic motion near the surface of asteroids[J]. Astrophysics and Space Science,2015,360(2):63.
    [10] Wang X Y,Jiang Y,Gong S P. Analysis of the potential field and equilibrium points of irregular-shaped minor celestial bodies[J]. Astrophysics and Space Science,2014,353(1):105-121.
    [11] Popova O P,Jenniskens P,Emelyanenko V,et al. Chelyabinsk airburst,damage assessment,meteorite recovery,and characterization[J]. Science,2013,342(6162):1069-1073.
    [12] Brumfiel G.Russian meteor largest in a century[N]. Nature News. England,Macmillan Publishers Limited,part of Springer Nature,2013. doi: 10.1038/nature.12438.
    [13] Werner R A,Scheeres D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomical,1997,65(3):313-344.
    [14] Nolan M C,Magri C,Howell E S,et al. Shape model and surface properties of the OSIRIS-REx target Asteroid(101955) Bennu from radar and lightcurve observations[J]. Icarus,2013,226(1):629-640.
    [15] Nolan M C,Magri C,Howell E S,et al. Asteroid(101955) Bennu Shape Model V1.0[Z]. NASA Planetary Data System 211. Los Angeles:University of California,2013.
    [16] Jiang Y,Baoyin H X,Li J F,et al. Orbits and manifolds near the equilibrium points around a rotating asteroid[J]. Astrophysics and Space Science,2014,349(1):83-106.
    [17] Jiang Y,Zhang Y,Baoyin H X. Surface motion relative to the irregular celestial bodies[J]. Planetary and Space Science,2016,127:33-43.
    [18] Schwartz S R,Richardson D C,Michel P. An implementation of the soft-sphere discrete dlement method in a high-performance parallel gravity tree-code[J]. Granular Matter,2012,14:363-380.
    [19] 马鹏斌,宝音贺西. 近地小行星威胁与防御研究现状[J]. 深空探测学报,2016,3(1):10-17.Ma P B,Baoyin H X. Research status of the near-Earth asteroids' hazard and mitigation[J].Journal of Deep Space exploration,2016,3(1):10-17.
  • 加载中
计量
  • 文章访问数:  2328
  • HTML全文浏览量:  1
  • PDF下载量:  1376
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-01
  • 修回日期:  2017-04-09

潜在威胁小行星碰撞防御的计算与分析

doi: 10.15982/j.issn.2095-7777.2017.02.014
    基金项目:  国家自然科学基金资助项目(11372150)

摘要: 研究了采用碰撞的方式进行小行星防御的动力学问题。采用多面体模型来建立小行星的外形模型,以碎石堆模型来建立小行星的结构模型,计算了小行星受到与其密度和材质相同的球体高速碰撞过程和碰撞后的碎石分布。计算过程在考虑了小行星与碰撞球体的接触形变以及小行星内部组成碎石堆的接触形变条件下,计算了碎石堆内部的相互引力、法向接触力、切向静摩擦力、切向动摩擦力和滚动摩擦力矩。以小行星101955 Bennu(中文名贝努)为对象计算了潜在威胁小行星的碰撞防御过程的动力学行为。结果显示:采用高速碰撞的方法进行小行星防御可以有效地将小行星撞成大量碎小的石块,且该方法具有核爆的方法不可比拟的优势,即对空间环境无污染。

English Abstract

姜宇, 程彬, 宝音贺西, 李恒年. 潜在威胁小行星碰撞防御的计算与分析[J]. 深空探测学报, 2017, 4(2): 190-195. doi: 10.15982/j.issn.2095-7777.2017.02.014
引用本文: 姜宇, 程彬, 宝音贺西, 李恒年. 潜在威胁小行星碰撞防御的计算与分析[J]. 深空探测学报, 2017, 4(2): 190-195. doi: 10.15982/j.issn.2095-7777.2017.02.014
JIANG Yu, CHEN Bin, BAOYIN Hexi, LI Hengnian. Calculation and Analysis of the Impact Defense to the Potentially Hazardous Asteroids[J]. Journal of Deep Space Exploration, 2017, 4(2): 190-195. doi: 10.15982/j.issn.2095-7777.2017.02.014
Citation: JIANG Yu, CHEN Bin, BAOYIN Hexi, LI Hengnian. Calculation and Analysis of the Impact Defense to the Potentially Hazardous Asteroids[J]. Journal of Deep Space Exploration, 2017, 4(2): 190-195. doi: 10.15982/j.issn.2095-7777.2017.02.014
参考文献 (19)

目录

    /

    返回文章
    返回