中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从日地系统L2出发借力月球飞越近地小行星

何胜茂 彭超 高扬

何胜茂, 彭超, 高扬. 从日地系统L2出发借力月球飞越近地小行星[J]. 深空探测学报, 2016, 3(1): 18-28. doi: 10.15982/j.issn.2095-7777.2016.01.003
引用本文: 何胜茂, 彭超, 高扬. 从日地系统L2出发借力月球飞越近地小行星[J]. 深空探测学报, 2016, 3(1): 18-28. doi: 10.15982/j.issn.2095-7777.2016.01.003
HE Shengmao, PENG Chao, GAO Yang. Near-Earth Asteroid Flyby Trajectories from the Sun-Earth L2 via Lunar Gravity Assist[J]. Journal of Deep Space Exploration, 2016, 3(1): 18-28. doi: 10.15982/j.issn.2095-7777.2016.01.003
Citation: HE Shengmao, PENG Chao, GAO Yang. Near-Earth Asteroid Flyby Trajectories from the Sun-Earth L2 via Lunar Gravity Assist[J]. Journal of Deep Space Exploration, 2016, 3(1): 18-28. doi: 10.15982/j.issn.2095-7777.2016.01.003

从日地系统L2出发借力月球飞越近地小行星

doi: 10.15982/j.issn.2095-7777.2016.01.003
基金项目: 国家自然科学基金项目(11372311)

Near-Earth Asteroid Flyby Trajectories from the Sun-Earth L2 via Lunar Gravity Assist

  • 摘要: 对于停留在日地系统L2的“嫦娥2号”探测器,其后续飞行方案有多个选项,例如主动撞月或重返月球轨道、返回地球轨道或再入大气、飞往地月系统L1/L2或日地系统L1、进入深空飞越近地小行星(最终,“嫦娥2号”于2012年12月13日成功地实现了对Toutatis小行星的近距离飞越)。探讨上述的飞行方案需要对飞行轨道进行初步设计,总的速度脉冲限制在100 m/s以内并且需要考虑探测器同时受到太阳、地球、月球的引力作用。本研究设计了探测器从日地系统L2出发借力月球实现Toutatis小行星飞越的飞行方案,与直接飞越方案相比,借力月球可以进一步节省探测器的燃料消耗,其等效速度脉冲设计值为58.47 m/s。
  • [1] Gao Y, Li H, He S. First-round design of flight scenario for Chang'e-2's extended mission: taking off from lunar orbit[J]. Acta Mechanica Sinica,2012,28(5), 1466-1478.
    [2] Gao Y. Near-Earth asteroid flyby trajectories from the Sun-Earth L2 for Chang'e-2's extended flight[J]. Acta Mechanica Sinica. 2013, 29(1), 123-131.
    [3] Parker J S, Lo M W. Unstable resonant orbits near Earth and their applications in planetary missions[C]//AIAA/AAS Astrodynamics Specialist Conference. Providence, Rhode Island:AIAA,2004.
    [4] Jesick M, Ocampo C. Automated generation of symmetric lunar free-return trajectories[J]. Journal of Guidance, Control, and Dynamics, 2011,34(1): 98-106.
    [5] Gordon D P. Transfers to Earth-Moon L2 halo orbits using lunar proximity and invariant manifolds[D]. Purdue University, 2008.
    [6] Wilson R S, Howell K C. Trajectory design in the Sun-Earth-Moon system using lunar gravity assists[J]. Journal of Spacecraft Rockets, 1998,35(2), 191-198.
    [7] Farquhar R, Muhonen D, Church L. Trajectories and orbital maneuvers for the ISEE-3/ICE comet mission[J]. Journal of Astronautical Sciences, 1985,33(3), 235-254.
    [8] Belbruno E. Capture dynamics and chaotic motions in celestial mechanics with applications to the construction of low energy transfers[M]. Princeton:Princeton University Press, 2004.
    [9] Lo M,Ross S D. Low energy interplanetary transfers using invariant manifolds of L1 and L2 and halo orbits[C]// AAS/AIAA Space Flight Mechanics Meeting.Monterey, California:AIAA, 1998.
    [10] Koon W S, Lo M W, Marsden J E. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics[J]. Chaos, 2000, 10(2), 427-469.
    [11] Gomez G, Koon W S, Lo M W. Invariant manifolds, the spatial three-body problem and space mission design[C]// AAS-01-301, AAS/AIAA Astrodynamics Specialist Conference. Quebec City, Canada:AIAA,2001.
    [12] Gomez G, Jorba A, Masdemont J. Study of the transfer from the Earth to a halo orbit around the equilibrium point L1[J]. Celestial Mechanics and Dynamical Astronomy,1993, 56(4), 541-562.
    [13] Howell K, Mains D, Barden B. Transfer trajectories from Earth parking orbits to Sun-Earth halo orbits, [C]//AAS/AIAA Space Flight Mechanics Meeting, Advances in the Astronautical Sciences, 87(1),Univelt. San Diego, CA:AIAA,1994:399-422.
    [14] Senent J, Ocampo C, Capella A. Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2), 280-290.
    [15] Mingotti G, Topputo F, Bernelli-Zazzera F. Combined optimal low-thrust and stable-manifold trajectories to the Earth-Moon halo orbits[J]. New Trends in Astrodynamics and Applications, 2007, 3(886):100-112.
    [16] Ozimek M T, Howell K C. Low-thrust transfers in the Earth-Moon system, including applications to libration point orbit[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2), 533-549.
    [17] Howell K C, Kakoi K. Transfers between the Earth-Moon and Sun-Earth systems using manifolds and transit orbits[J]. Acta Astronautica, 2006(59):367-380.
    [18] JPL DE405 Ephemeris[EB/OL]. [2015-10-05]. ftp://ssd.jpl.nasa.gov/pub/eph/export/usrguide.
    [19] SzebehelyV. Theory of orbits: the restricted problem of three bodies[M]. New York:Academic Press, 1967.
    [20] NEO Earth close-approaches[EB/OL]. [2015-10-05]. http://neo.jpl.nasa.gov/cgibin/neo ca/.
    [21] 叶培建, 黄江川, 张廷新, 等. 嫦娥二号卫星技术成就与中国深空探测展望[J]. 中国科学:技术科学, 2013, 43(05):467-477.Ye P J, Huang J C, Zhang Y X, et al. Technical achievement of Chang'E-2 and prospect of Chinese deep space exploration[J]. Scientia Sinica Technologica, 2013, 43(05):467-477.
    [22] 吴伟仁, 崔平远, 乔栋, 等. 嫦娥二号日地拉格朗日L2点探测轨道设计与实施[J]. 科学通报, 2012, 57(21):1987-1991.Wu W R, Cui P Y, Qiao D, et al. Design and performance of exploring trajectory to Sun-Earth L2 point for Chang'E-2 mission[J]. Chinese Science Bulletin, 2012, 57(21):1987-1991.
    [23] 乔栋, 黄江川, 崔平远, 等. 嫦娥二号卫星飞越Toutatis小行星转移轨道设计[J]. 中国科学:技术科学, 2013, 43(5):487-492.Qiao D, Huang J C, Cui P Y, et al. Transfer orbit design for Chang'E-2 flyby of asteroid Toutatis[J]. Scientia Sinica Technologica, 2013, 43(5):487-492.
    [24] 刘磊, 吴伟仁, 唐歌实, 等. 嫦娥二号后续小行星飞越探测任务设计[J]. 国防科技大学学报, 2014, 36(2):13-17.Liu L, Wu W R, Tang G S, et al. Design of an asteroid flying-by mission for Chang'E-2[J]. Journal of National University of Defense Technology, 2014, 36(2):13-17.
    [25] 胡寿村, 季江徽, 赵玉晖, 等. 嫦娥二号飞越小行星试验中图塔蒂斯轨道确定与精度分析[J]. 中国科学:技术科学, 2013, 43(5):506-511.Hu S C, Ji J H, Zhao Y H, et al. Orbit detemination and precision analysis of Toutatis in flying-by experiment for Chang'E-2[J]. Scientia Sinica Technologica, 2013, 43(5):506-511.
    [26] 田百义, 周文艳, 刘德成. 嫦娥二号卫星绕日运行轨道分析[J]. 航天器工程, 2015, 24(4):7-11. Tian B Y, Zhou W Y, Liu D C. Analysis of Chang'e-2 heliocentric orbit[J]. Spacecraft Engineering, 2015, 24(4):7-11.
    [27] Gao Y. Analysis of the Earth co-orbital motion of Chang'e-2 after asteroid flyby[J]. Chinese Science Bulletin, 2014, 59(17): 2045-2049.
  • [1] 雷英俊, 朱立颖, 张文佳.  我国深空探测任务电源系统发展需求 . 深空探测学报, 2020, 7(1): 35-40. doi: 10.15982/j.issn.2095-7777.2020.20190712001
    [2] 罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞.  中国空间引力波探测“太极计划”及“太极1号”在轨测试 . 深空探测学报, 2020, 7(1): 3-10. doi: 10.15982/j.issn.2095-7777.2020.20191230001
  • 加载中
计量
  • 文章访问数:  2324
  • HTML全文浏览量:  0
  • PDF下载量:  1513
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-05
  • 修回日期:  2015-11-04

从日地系统L2出发借力月球飞越近地小行星

doi: 10.15982/j.issn.2095-7777.2016.01.003
    基金项目:  国家自然科学基金项目(11372311)

摘要: 对于停留在日地系统L2的“嫦娥2号”探测器,其后续飞行方案有多个选项,例如主动撞月或重返月球轨道、返回地球轨道或再入大气、飞往地月系统L1/L2或日地系统L1、进入深空飞越近地小行星(最终,“嫦娥2号”于2012年12月13日成功地实现了对Toutatis小行星的近距离飞越)。探讨上述的飞行方案需要对飞行轨道进行初步设计,总的速度脉冲限制在100 m/s以内并且需要考虑探测器同时受到太阳、地球、月球的引力作用。本研究设计了探测器从日地系统L2出发借力月球实现Toutatis小行星飞越的飞行方案,与直接飞越方案相比,借力月球可以进一步节省探测器的燃料消耗,其等效速度脉冲设计值为58.47 m/s。

English Abstract

何胜茂, 彭超, 高扬. 从日地系统L2出发借力月球飞越近地小行星[J]. 深空探测学报, 2016, 3(1): 18-28. doi: 10.15982/j.issn.2095-7777.2016.01.003
引用本文: 何胜茂, 彭超, 高扬. 从日地系统L2出发借力月球飞越近地小行星[J]. 深空探测学报, 2016, 3(1): 18-28. doi: 10.15982/j.issn.2095-7777.2016.01.003
HE Shengmao, PENG Chao, GAO Yang. Near-Earth Asteroid Flyby Trajectories from the Sun-Earth L2 via Lunar Gravity Assist[J]. Journal of Deep Space Exploration, 2016, 3(1): 18-28. doi: 10.15982/j.issn.2095-7777.2016.01.003
Citation: HE Shengmao, PENG Chao, GAO Yang. Near-Earth Asteroid Flyby Trajectories from the Sun-Earth L2 via Lunar Gravity Assist[J]. Journal of Deep Space Exploration, 2016, 3(1): 18-28. doi: 10.15982/j.issn.2095-7777.2016.01.003
参考文献 (27)

目录

    /

    返回文章
    返回