引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2234次   下载 1771 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于光学图像的撞击坑识别研究综述
丁萌1, 李海波2, 曹云峰3, 庄丽葵3
1.南京航空航天大学 民航学院, 南京 210016;2.南京航空航天大学 自动化学院, 南京 210016;3.南京航空航天大学 航天学院, 南京 210016
摘要:
当前,随着深空探测研究工作的需要,将信息科学的图像处理、模式识别技术应用到空间探测领域成为必然。基于光学图像的撞击坑自主检测技术就是将信息科学的图像处理技术应用到空间科学研究中的一个很好例证,近年来得到了各国学者的重视。本文针对这一领域的相关研究进行了介绍与分析。首先,对这一技术的研究意义从地质学、天体表面结构和特征数据库建设、探测器导航三个角度加以说明;其次,详细阐述了该技术的研究现状,简要介绍了其中一些经典算法,并将相关算法分为三类:全自主检测算法、半自主检测算法和组合检测算法;最后,提出了该技术研究所面临的难点和未来研究方向与应用空间,以及介绍了作者在这一方面的研究进展。
关键词:  光学图像;撞击坑;自主检测
DOI:10.15982/j.issn.2095-7777.2015.03.001
分类号:
基金项目:国家自然科学基金资助项目(61203170);航天创新基金,江苏省研究生培养创新工程(KYLX_0282)
Research Survey of Passive Image-Based Impact Crater Detection
DING Meng1, LI Haibo2, CAO Yunfeng3, ZHUANG Likui3
1.College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2.College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;3.College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:
Currently more and more technologies of information science, such as image processing and pattern recognition, are used in the development of space science. The autonomous crater detection which gains many researchers'attention in recent years is one of the good examples in this field. This paper introduces the autonomous crater detection technology from passive images in details. Firstly, the applications of autonomous crater detection in three areas including geology or astronomy, space database establishment and spacecraft navigation and positioning are discussed. Secondly, the state of autonomous crater detection technology is introduced, esp. some typical algorithms are addressed. In order to explain these methods clearly, the related algorithms are classified into three kinds: Unsupervised Detection, Supervised Detection and Combination Detection. Finally, the difficulties, further work of autonomous crater detection and the author's work are addressed shortly.
Key words:  passive image;impact crater;autonomous detection