中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于火星表面生命信息探测的激光拉曼技术进展

薛彬 刘生润 杨建峰

薛彬, 刘生润, 杨建峰. 用于火星表面生命信息探测的激光拉曼技术进展[J]. 深空探测学报(中英文), 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012
引用本文: 薛彬, 刘生润, 杨建峰. 用于火星表面生命信息探测的激光拉曼技术进展[J]. 深空探测学报(中英文), 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012
XUE Bin, LIU Shengrun, YANG Jianfeng. Advancements in Detection of Life Information on Mars with Raman Laser Spectroscopy[J]. Journal of Deep Space Exploration, 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012
Citation: XUE Bin, LIU Shengrun, YANG Jianfeng. Advancements in Detection of Life Information on Mars with Raman Laser Spectroscopy[J]. Journal of Deep Space Exploration, 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012

用于火星表面生命信息探测的激光拉曼技术进展

doi: 10.15982/j.issn.2095-7777.2019.05.012

Advancements in Detection of Life Information on Mars with Raman Laser Spectroscopy

  • 摘要: 生命信息探测一直是深空探测中重要的一个部分。简要介绍了拉曼光谱技术探测有机物的优势和火星生命信息探测进展,以及常见的火星生命信息探测技术;重点概述了国内外用于火星有机物和生命信息探测的激光拉曼光谱技术的进展,分析总结了火星表面有机物质探测技术的发展趋势;最后简要概述了拉曼光谱技术在火星探测领域的发展前景。
  • [1] 许春,王成良.火星探测技术综述[J].红外, 2008, 29(7):1-8. XU C, WANG C L.Overview of Mars exploration technology[J].In-frared, 2008, 29(7):1-8.
    [2] CRAIG P M.Why choose Raman spectroscopy for the exploration of Mars[J].materials AUSTRALIA, 2006, 39(5):26-28.
    [3] 刘建军,李春来.行星表面物质成分就位分析仪器的研究进展[C]//中国宇航学会深空探测技术专业委员会学术会议.北京:中国宇航学会深空探测技术专业委员会学术会议, 2005:391-394.
    [4] BYRN E, INGERSOLL A P. A sublimation model for martian south polar ice features[J]. Science, 2003, 299(5609):1051-1053.
    [5] HERKENHOFF K E, SQUYRES S W, ARVIDSON R, et al. Evidence from Opportunity's Microscopic Imager for water on Meridiani Planum[J]. Science, 2004, 306(5702):1727-1730.
    [6] AGEEC B, ELARDOS M. Unique meteorite from early Amazonian Mars:water-rich basaltic breccia Northwest Africa 7034.[J]. Science, 2013, 339(6121):780-785.
    [7] LIN Y, EL GORESY A, HU S, et al. NanoSIMS analysis of organic carbon from the Tissint Martian meteorite:evidence for the past existence of subsurface organic-bearing fluids on Mars[J]. Meteoritics&Planetary Science, 2015, 49(12):2201-2218.
    [8] NASA. NASA confirms evidence that liquid water flows on today's Mars[EB/OL].[2017-07-10]. https://phys.org/news/2015-09-evidence-brine-mars.html.
    [9] LALLA E A, SANZ-ARRANZ A, LOPEZ-REYES G, et al. RamanMössbauer-XRD studies of selected samples from "Los Azulejos" outcrop:a possible analogue for assessing the alteration processes on Mars[J]. Advances in Space Research, 2016, 57(11):2385-2395.
    [10] MADERAZZO M, HUGUENIN R. Petrologic interpretation of viking XRF analysis based on reflectance spectra and the photochemical weathering model[J]. Investigative Ophthalmology&Visual Science, 1977, 16(9):779-86.
    [11] KLINGELHÖFER G, MORRIS R V, DE SOUZA P A, et al. Two Earth years of Mössbauer studies of the surface of Mars with MIMOS II[J]. Hyperfine Interactions, 2006, 170(1-3):169-177.
    [12] SCHRÖDER S, MESLIN P Y, COUSIN A, et al. First analysis of hydrogen in ChemCam spectra at Curiosity landing site[C]//European Geosciences Union.Vienna:[s.n.], 2013.
    [13] WÄNKE H. Chemistry, accretion, and evolution of Mars[J]. Space Science Reviews, 1991, 56(1-2):1-8.
    [14] BISHOP J L, ROTHSTEIN Y, DYAR M D, et al. Distinguishing Na, K, and H3O+ jarosite and aluniteon Mars using VNIR, emittance and mossbauer spectroscopy on the MER and Mars express/OMEGA missions[C]//AGU Fall Meeting Abstracts.[S.l.]:AGU, 2005.
    [15] WIENS R C, MAURICE S, BARRACLOUGH B, et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover:body unit and combined system tests[J]. Space Science Reviews, 2012, 170(1-4):167-227.
    [16] SHARMA S K, LUCEY P G, GHOSH M, et al. Stand-off Raman spectroscopic detection of minerals on planetary surfaces[J]. Spectrochimica Acta Part A Molecular&Biomolecular Spectroscopy, 2003, 59(10):2391-2407.
    [17] LALLA E A, LOPEZ-REYES G, SANSANO A, et al. Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island:implication for Mars[J]. Geoscience Frontiers, 2016, 7(4):673-681.
    [18] 韩伟,黄建同,苏乐,等.基于激光显微拉曼技术鉴别印章盖印时间[J].光散射学报, 2015, 27(4):359-363. HAN W, HUANG J T, SU L, et al. Application of Micro-Raman spec-troscopy technology in testing the again of stamp impressions[J].The Journal of Light, 2015, 27(4):359-363.
    [19] HOLLOWAY J H. Explosives standoff detection using Raman spectroscopy:from bulk towards trace detection[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2010, 7664(8):76441K1-76441K12.
    [20] 刘燕德,刘涛,孙旭东,等.拉曼光谱技术在食品质量安全检测中的应用[J].光谱学与光谱分析, 2010, 30(11):3007-3012. LIU YD, LIU T, SUN X D, et al. Application of Raman spectroscopy technique to food quality and safety detection[J]. Spectroscopy and Spectral Analysis,2010,30(11):3007-3012.
    [21] ANGEL S M, GOMER N R, SHARMA S K, et al. Remote Raman spectroscopy for planetary exploration:a review.[J]. Applied Spectroscopy, 2012, 66(2):137-150.
    [22] WANG A, JOLLIFF B L, HASKIN L A. Raman spectroscopy as a method for mineral identification on lunar robotic exploration missions[J]. Journal of Geophysical Research Planets, 1995, 100(E10):21189-21199.
    [23] HASKIN L A, WANG A, Rockow K M, et al. Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis:a point count method[J]. Journal of Geophysical Research Planets, 1997, 102(E8):19293-19306.
    [24] WANG A, HASKIN L A, LANE A L, et al. Development of the Mars microbeam Raman spectrometer (MMRS)[J]. Journal of Geophysical Research Atmospheres, 2003, 108(E1):233-236.
    [25] SHARMA S K, WANG A, HASKIN L A. Remote Raman measurements of minerals with Mars microbeam Raman spectrometer (MMRS)[J]. Aorn Journal, 2005, 58(1):370-4.
    [26] JEHLIČKA J, EDWARDSH G M, VÍTEK P. Assessment of Raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for Mars studies[J]. Planetary&Space Science, 2009, 57(5):606-613.
    [27] BAZALGETTE C G, AHLERS B, PÉREZ F R. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars.[J]. SpectrochimicaActa Part A Molecular&Biomolecular Spectroscopy, 2007, 68(4):1023-1028.
    [28] MORAL A G, COLOMBO M. ExoMars Raman laser spectrometer for Exomars[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8152(1):81520J1-81520J13.
    [29] EDWARDS H G M, HUTCHINSON I, INGLEY R. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype[J]. Analytical&Bioanalytical Chemistry, 2012, 404(6-7):1723.
    [30] MORAL A G, RAMOS G, COLOMBO M. ExoMars Raman laser spectrometer breadboard overview[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8152:81520L1-81520L13.
    [31] EDWARDS H G M, HUTCHINSON I, INGLEY R. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype[J]. Analytical&Bioanalytical Chemistry, 2012, 404(6-7):1723.
    [32] BEEGLE L, BHARTIA R, WHITE M, et al. SHERLOC:scanning habitable environments with Raman&luminescence for organics&chemicals[C]//IEEE Aerospace Conference.Montana:IEEE, 2015.
    [33] BEEGLE L W, BHARTIA R, DEFLORES L, et al. SHERLOC:an investigation for Mars 2020[J]. Lpi Contributions, 2016, 18:1-9.
    [34] MISRA A K, TAYLOR G J, GASDA P J, et al. Next generation laserbased standoff spectroscopy techniques for Mars exploration[J]. Applied Spectroscopy, 2015, 69(2):173-192.
    [35] CARRIER B L, BEEGLE L W, BHARTIA R, et al. Measurement of UV fluorescence and raman signatures of organic compounds in the subsurface of Mars relevant minerals to constrain detection Depth for the SHERLOC Mars 2020 instrument[C]//Lunar and Planetary Science Conference.[S.l.]:Lunar and Planetary Science Conference, 2016.
    [36] 朱香平,张文松,汤洁,等.一种行星表面物质及大气远程原位综合测试系统:中国, 201310675957.1[P]. 2013-12-11.
    [37] 朱香平,张文松,汤洁,等.共聚焦显微拉曼和激光诱导击穿光谱联用激光光谱分析仪:中国, 201320817233.1[P]. 2013-12-11.
    [38] 张丹.用于火星表面物质探测的拉曼光谱技术研究[D].北京:中国科学院大学, 2015. ZHANG D. Study of Raman spectrum technique for material detec-tion on Mars surface[D]. Beijing:University of Chinese Academy of Sciences,2015.
    [39] 舒嵘,万雄,徐卫明,等.基于主被动结合光谱技术的火星物质成分测试系统, 201510868730.8[P]. 2015-12-01.
    [40] HU Y C, ZHANG L L, WU Z C, et al. Developing mini Raman spectral system in mineral spectral analysis[J]. Physics ecperimentation, 2016, 36(10):34-36.
    [41] LING Z C, CAO F K, NI Y H, et al. Raman spectroscopic study of the K-Na jarosite solid solutions[C]//Lunar and Planetary Science Conference.[S.l.]:Lunar and Planetary Science Conference, 2015.
    [42] DIGREGORIO B E. Uncovering the secret of the rocks with LIBS[J]. Spectroscopy, 2003, 18(3):30-31.
    [43] BAZALGETTE C G, AHLERS B, PÉREZ F R. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars[J]. SpectrochimicaActa Part A Molecular&Biomolecular Spectroscopy, 2007, 68(4):1023-1028.
    [44] SHARMA S K, ISMAIL S, ANGEL S M, et al. Remote Raman and laser-induced fluorescence (RLIF) emission instrument for detection of mineral, organic, and biogenic materials on Mars to 100 meters radial distance[C]//Instruments, Science, and Methods for Geospace and Planetary Remote Sensing. Honolulu:[s.n.], 2004.
    [45] BLACKSBERG J, MARUYAMA Y, CHOUKROUN M, et al. Combined Raman and LIBS for planetary surface exploration:enhanced science return enabled by time-resolved laser spectroscopy[J]. International Workshop on Instrumentation for Planetary Missions, 2012, 1683:1044.
  • [1] 王靓玥, 郭延宁, 马广富.  火星探测器制动捕获策略研究 . 深空探测学报(中英文), 2020, 7(2): 178-183. doi: 10.15982/j.issn.2095-7777.2020.20171123001
    [2] 滕锐, 韩宏伟, 乔栋.  火星探测最优离轨制导方法研究 . 深空探测学报(中英文), 2020, 7(2): 184-190. doi: 10.15982/j.issn.2095-7777.2020.20190315001
    [3] 徐侃彦, 马玲玲, 印红, 张轶男.  火星无人探测与行星保护 . 深空探测学报(中英文), 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
    [4] 孟庆宇, 付中梁, 董吉洪, 王栋.  火星探测高分辨率可见光相机光学系统设计 . 深空探测学报(中英文), 2018, 5(5): 458-464. doi: 10.15982/j.issn.2095-7777.2018.05.008
    [5] 申智春, 林小艳, 程坤, 王海鹏.  火星探测器器箭分离冲击响应影响分析与评价 . 深空探测学报(中英文), 2018, 5(5): 483-487. doi: 10.15982/j.issn.2095-7777.2018.05.012
    [6] 刘建军, 苏彦, 左维, 任鑫, 孔德庆, 温卫斌, 张洪波, 李春来.  中国首次火星探测任务地面应用系统 . 深空探测学报(中英文), 2018, 5(5): 414-425. doi: 10.15982/j.issn.2095-7777.2018.05.003
    [7] 刘庆会.  火星探测VLBI测定轨技术 . 深空探测学报(中英文), 2018, 5(5): 435-441. doi: 10.15982/j.issn.2095-7777.2018.05.005
    [8] 耿言, 周继时, 李莎, 付中梁, 孟林智, 刘建军, 王海鹏.  我国首次火星探测任务 . 深空探测学报(中英文), 2018, 5(5): 399-405. doi: 10.15982/j.issn.2095-7777.2018.05.001
    [9] 杨甲森, 刘明洁, 陈托, 智佳, 张华伟, 王炜, 陈志敏.  中国首次火星探测任务有效载荷地面综合测试系统设计 . 深空探测学报(中英文), 2018, 5(5): 442-449. doi: 10.15982/j.issn.2095-7777.2018.05.006
    [10] 李春来, 刘建军, 耿言, 曹晋滨, 张铁龙, 方广有, 杨建峰, 舒嵘, 邹永廖, 林杨挺, 欧阳自远.  中国首次火星探测任务科学目标与有效载荷配置 . 深空探测学报(中英文), 2018, 5(5): 406-413. doi: 10.15982/j.issn.2095-7777.2018.05.002
    [11] 舒嵘, 徐卫明, 付中梁, 万雄, 袁汝俊.  深空探测中的激光诱导击穿光谱探测仪 . 深空探测学报(中英文), 2018, 5(5): 450-457. doi: 10.15982/j.issn.2095-7777.2018.05.007
    [12] 叶斌龙, 赵健楠, 黄俊.  美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考 . 深空探测学报(中英文), 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002
    [13] 朱岩, 白云飞, 王连国, 沈卫华, 张宝明, 王蔚, 周盛雨, 杜庆国, 陈春红.  中国首次火星探测工程有效载荷总体设计 . 深空探测学报(中英文), 2017, 4(6): 510-514,534. doi: 10.15982/j.issn.2095-7777.2017.06.002
    [14] 李贺, 全齐全, 王鑫剑, 姜生元, 邓宗全.  一种基于压电驱动的火星岩石钻探器的研制 . 深空探测学报(中英文), 2016, 3(2): 156-161. doi: 10.15982/j.issn.2095-7777.2016.02.010
    [15] 陈晓, 尤伟, 黄庆龙.  火星探测巡航段天文自主导航方法研究 . 深空探测学报(中英文), 2016, 3(3): 214-218. doi: 10.15982/j.issn.2095-7777.2016.03.003
    [16] 于登云, 孙泽洲, 孟林智, 石东.  火星探测发展历程与未来展望 . 深空探测学报(中英文), 2016, 3(2): 108-113. doi: 10.15982/j.issn.2095-7777.2016.02.002
    [17] 高朝辉, 童科伟, 时剑波, 申麟.  载人火星和小行星探测任务初步分析 . 深空探测学报(中英文), 2015, 2(1): 10-19. doi: 10.15982/j.issn.2095-7777.2015.01.002
    [18] 傅惠民, 娄泰山, 肖强.  火星进入段探测器自校准状态估计 . 深空探测学报(中英文), 2015, 2(3): 224-228. doi: 10.15982/j.issn.2095-7777.2015.03.006
    [19] 侯建文, 周杰.  “火星科学实验室”巡航段导航、制导与控制 . 深空探测学报(中英文), 2014, 1(2): 110-116.
    [20] 陈颖, 周璐, 王立.  一种火星多模式组合探测任务设想 . 深空探测学报(中英文), 2014, 1(2): 156-160.
  • 加载中
计量
  • 文章访问数:  454
  • HTML全文浏览量:  23
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-10
  • 修回日期:  2017-09-21
  • 刊出日期:  2019-10-01

用于火星表面生命信息探测的激光拉曼技术进展

doi: 10.15982/j.issn.2095-7777.2019.05.012

摘要: 生命信息探测一直是深空探测中重要的一个部分。简要介绍了拉曼光谱技术探测有机物的优势和火星生命信息探测进展,以及常见的火星生命信息探测技术;重点概述了国内外用于火星有机物和生命信息探测的激光拉曼光谱技术的进展,分析总结了火星表面有机物质探测技术的发展趋势;最后简要概述了拉曼光谱技术在火星探测领域的发展前景。

English Abstract

薛彬, 刘生润, 杨建峰. 用于火星表面生命信息探测的激光拉曼技术进展[J]. 深空探测学报(中英文), 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012
引用本文: 薛彬, 刘生润, 杨建峰. 用于火星表面生命信息探测的激光拉曼技术进展[J]. 深空探测学报(中英文), 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012
XUE Bin, LIU Shengrun, YANG Jianfeng. Advancements in Detection of Life Information on Mars with Raman Laser Spectroscopy[J]. Journal of Deep Space Exploration, 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012
Citation: XUE Bin, LIU Shengrun, YANG Jianfeng. Advancements in Detection of Life Information on Mars with Raman Laser Spectroscopy[J]. Journal of Deep Space Exploration, 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012
参考文献 (45)

目录

    /

    返回文章
    返回