| 摘要: | 
	         
			 
		     | 介绍了空间小推力轨道优化问题中的最优Bang-Bang控制问题,对两类延拓解法给出了描述:第一类解法首先求解能量最优解,然后采用能量-燃耗同伦得到最优Bang-Bang控制;第二类解法引入推力开关切换准则,以双脉冲解作为初解,通过参数延拓得到最优Bang-Bang控制。对两类延拓解法进行了比较,指出了各自的优势与特点。对延拓方法应用于求解更加复杂的小推力轨道设计问题进行了展望,提出了包含初解、延拓与拼接三要素的人工智能轨道优化概念。 | 
	         
			
	         
				| 关键词:  小推力轨道  数值优化  Bang-Bang控制  同伦延拓  人工智能 | 
	         
			 
                | DOI:10.15982/j.issn.2095-7777.2017.02.001 | 
           
            
                | 分类号: | 
             
			 
             
                | 基金项目:国家自然科学基金项目(11372311);中国科学院空间科学研究院培育项目;中国科学院国防科技创新基金项目(CXJJ-15M016) | 
             
           | 
           
                | Survey of Two Classes of Continuation Methods for Solving Optimal Bang-Bang Control of Low-Thrust Space Trajectories | 
           
           
			
                | 
				
				ZHU Zhengfan1, GAO Yang2
						
				
				 | 
           
           
		   
		   
                | 
				
				1.Academy of Opto-electronics, Chinese Academy of Sciences, Beijing 100094, China;2.Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | The optimal Bang-Bang control problem of low-thrust space trajectories is introduced. Two classes of continuation methods are described:the first solves the energy-optimal solution,and subsequently employs the energy-fuel homotopy to obtain the optimal Bang-Bang control;the second introduces a switching principle,and obtains the optimal Bang-Bang control through parameter continuation starting from a two-impulse solution. The two continuation methods are compared,and the advantages and characteristics of the two methods are discussed. The prospects of the continuation methods applying to more complicated low-thrust trajectory designs are proposed. The concept of artificial intelligence trajectory optimization is presented,which contains three aspects:initial solution,continuation,and patching. | 
            
	       
                | Key words:  low thrust  numerical optimization  Bang-Bang control  homotopy continuation  artificial intelligence |