基于伪谱法的小天体最优下降轨迹优化方法

袁旭^{1,2,3},朱圣英^{1,2,3}

(1.北京理工大学 深空探测技术研究所,北京 100081; 2.深空自主导航与控制工信部重点实验室,北京 100081; 3.飞行器动力学与控制教育 部重点实验室,北京 100081)

摘 要: 针对小天体着陆探测下降阶段的多约束轨迹优化问题,基于Gauss伪谱法进行了燃耗最优下降轨迹优化设 计,得出了燃耗最优下降轨迹。建立了小天体下降轨迹优化问题的最优控制问题模型,采用Gauss伪谱法进行离散化,转化 为非线性规划问题进行了求解。数学仿真结果显示:优化结果符合各项约束条件,以零速度到达了目标着陆点,且符合燃 耗最优的优化目标。利用Gauss伪谱法进行小天体最优下降轨迹优化,计算速度快,求解精度高。

关键词:小天体;下降;着陆;轨迹优化;Gauss伪谱法

文献标识码: A

文章编号: 2095-7777(2016)01-0051-05

DOI: 10.15982/j.issn.2095-7777.2016.01.008

中图分类号: V448

引用格式: 袁旭,朱圣英. 基于伪谱法的小天体最优下降轨迹优化方法[J]. 深空探测学报, 2016, 3(1): 51-55.

Reference format: Yuan X, Zhu S Y. Small body descent trajectory optimization based on pseudospectral method [J]. Journal of Deep Space Exploration, 2016, 3(1): 51–55.

0 引 言

小天体探测是人们认识和研究太阳系的起源与演 化的重要手段,是21世纪深空探测活动的重要内容。 随着小天体探测活动的不断发展,探测手段从飞跃探 测等简单形式逐渐向撞击、着陆、采样返回等更为复 杂、科学成果更加丰富的形式转变^[1]。迄今,人类2次 成功完成了着陆任务,一次为2001年2月,NASA发射 的NEAR探测器着陆于Eros小行星^[2],另一次为2005年 11月,日本JAXA发射的Hayabusa探测器着陆于 Itokawa小行星并采样返回^[3]。此外,欧洲空间局 (ESA)发射的Rosetta探测器于2014年11月12日对 Churyumov-Gerasimenko彗星进行了着陆探测。

下降与着陆阶段是小天体着陆或采样返回探测的 关键阶段,对能否安全、准确到达预设的具有科学探 测价值的目标区域起着决定性的作用。小天体探测器 的下降过程可以转化为一个轨迹优化问题以及对标称 轨迹的跟踪控制问题。设定的标称轨迹需要能够安 全、准确地到达指定着陆点,满足始末状态约束、路 径约束、控制约束等多重约束,同时使某项重要的性 能指标(如燃耗、时间等)最优化。

轨迹优化方法主要包括基于参数化方法的直接法 和基于庞特里亚金极小值原理的间接法。Gauss伪谱法 (Gauss pseudospectral method, GPM)是直接法的一种,是近年来应用广泛的轨迹优化方法之一。Gauss伪 谱法的原理是利用全局插值多项式的有限基来近似状 态量和控制量,且在一系列的配点上满足动力学方程 约束,将微分方程约束转化为代数约束,从而将原连 续最优控制问题转化为离散的非线性规划问题。Gauss伪谱法对初始猜测值不敏感,配点后的状态和控 制量采用多项式拟和,无需数值积分,大大节省了计 算时间,且能满足一阶必要性条件,因此成为轨迹优 化领域的研究热点^[4]。本文采用Gauss伪谱法对小天体 最优下降轨迹问题进行优化求解。

本文首先建立小天体最优下降轨迹优化问题的数 学模型,给出小天体下降过程的动力学方程,进而建 立原始最优控制问题的各项约束和目标性能函数;然 后利用Gauss伪谱法对连续最优控制问题进行离散化, 转化为静态的非线性规划问题;最后以Eros 433小行星 为目标小天体,对上述过程进行仿真求解,对仿真结 果进行了分析和总结。

1 小天体最优下降轨迹优化问题

1.1 问题描述

小天体最优下降轨迹优化问题可描述为探测器从

收稿日期: 2014-11-29; 修回日期: 2015-10-09

基金项目:国家重点基础研究发展计划"973"项目(2012CB720000);国家自然科学基金资助项目(61374216,61304226,61304248);教 育部博士点基金(20121101120006)

初始的探测轨道上某处,经一段时间后以零速度到达 目标着陆点,实现软着陆。轨迹优化的目的是在满足 始末状态、动力学和控制约束的前提下,使在此过程 中的某项指标达到最优,如时间最优或燃耗最优。由 于小天体探测的目标星体距地球非常遥远,任务持续 时间可达数年,尤其采样返回任务还需保留足够的燃 料以将小天体表面样本带回地球,因此燃耗是任务设 计中的关键环节。这里将燃耗最优作为下降轨迹的优 化目标。

1.2 动力学模型

在进行下降轨迹优化前,首先建立原始最优控制 问题的数学模型,包括探测器在小天体下降过程中的 动力学模型、受到的各项约束和需要优化的指标函 数。

探测器的下降过程采用小天体固连坐标系 \sum "进行 建模:坐标原点 o_a 位于小天体的质量中心, z_a 轴沿小天 体最大惯量轴即小天体自旋轴方向, x_a 轴沿小天体最 小惯量轴方向, y_a 轴的定义使 x_a , y_a , z_a 三轴满足右手 法则。

假设小天体密度均匀并绕其最大惯量主轴匀速转 动,忽略其他干扰力,在小天体固连坐标系下,着陆 器的动力学方程可表示为

$$\begin{cases} \ddot{x} = \omega^2 x + 2\omega \dot{y} + V_x + \frac{T_x}{m} \\ \ddot{y} = \omega^2 y - 2\omega \dot{x} + V_y + \frac{T_y}{m} \\ \ddot{z} = V_z + \frac{T_z}{m} \\ \dot{m} = -\frac{T}{I_{sp} \cdot g_0} \end{cases}$$
(1)

其中: x,y,z为探测器的三轴位置坐标; \dot{x},\dot{y},\dot{z} 为探测器 三轴速度大小; m为着陆器质量, 共同组成探测器状 态向量 $X = \begin{bmatrix} x & yz & \dot{x} & \dot{y} & \dot{z} & m \end{bmatrix}^{T}$; ω 为小天体的 自旋角速度; T_x , T_v , T_z 分别为三轴的控制力大小; I_{sp} 为发动机比冲; g_0 为地球海平面引力加速度; V_x , V_v , V_z 为小天体作用在探测器上的三轴引力加速度 大小。

小天体引力势函数采用球谐函数形式,即¹⁵¹

$$\begin{cases} V = \frac{GM}{a} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(\frac{a}{r}\right)^{n+1} \left(C_{nm}V_{nm} + S_{nm}W_{nm}\right) \\ V_{nm} = P_{nm}(\sin\varphi)\cos m\theta \\ W_{nm} = P_{nm}(\sin\varphi)\sin m\theta \end{cases}$$
(2)

其中: a为小天体名义半径; θ , φ , r分别为探测器所 处的经度、纬度和半径; P_{nm} 为缔结勒让德多项式; Cnm和Snm为小天体对应的引力场球谐函数各阶系数。

1.3 约束与性能指标函数

探测器在下降过程中受到的约束包括动力学约 束,初始、末端状态约束和路径约束。其中,动力学 约束即为下降过程的动力学方程式(1)。

初始状态约束是指探测器在研究的初始时刻,位 置、速度等状态变量满足一定的约束关系,如处于某 一绕飞轨道,或处于某一悬停状态等,可表示为

$$\psi(x, y, z, \dot{x}, \dot{y}, \dot{z}, m) = 0 \tag{3}$$

当初始状态为已知时即为

$$\mathbf{X}(0) = \left[x_{0}, y_{0}, z_{0}, \dot{x}_{0}, \dot{y}_{0}, \dot{z}_{0}, m_{0}\right]^{\mathrm{T}}$$
(4)

末端状态约束包括到达预定的着陆位置、着陆速 度为零,以及末端质量不小于探测器的干重

$$\begin{cases} x(t_f) = x_f, y(t_f) = y_f, z(t_f) = z_f, \\ \dot{x}(t_f) = 0, \dot{y}(t_f) = 0, \dot{z}(t_f) = 0, \\ m(t_f) \ge m_{dry} \end{cases}$$
(5)

其中: t_f 为到达目标着陆点的时刻; $[x_f, y_f, z_f]^T$ 为目标着陆点; m_{drv} 为探测器干重,即全部燃料耗尽后的质量。

此外,这里考虑探测器推力的限制为路径约束

$$T \leq T_{\max}$$
 (6)

探测器下降轨迹优化的目标是燃料消耗最小,即 末端质量最大。性能指标函数可表示为

$$J = -m\left(t_f\right) \tag{7}$$

动力学约束式(1)、边界约束式(4)、式(5)、路径约 束式(6)和性能指标函数式(7)即组成了小天体最优下降 轨迹优化问题的数学模型。这样,最优轨迹优化问题 转换为最优控制问题,下面利用Gauss伪谱法对此连续 最优控制问题进行求解。

2 基于伪谱法的最优下降轨迹优化

Gauss伪谱法首先求解Legendre多项式一阶导数在 [-1,1]区间内的根作为时间节点值,将节点上的状态和 控制变量作为参数,用Lagrange插值多项式拟合轨迹 上各时刻状态和控制变量。对于动力学方程的微分方 程约束,对Lagrange插值多项式在各节点上求导,令 其等于动力学方程在各节点上的值,这样将原始的动 力学微分方程约束转化为代数方程约束,再结合边界 约束、路径约束以及性能指标函数共同构成有静态的 限维非线性规划问题进行求解^[6]。 利用Gauss伪谱法解最优控制问题,首先需要将 $t \in [t_0, t_f]$ 映射到 $\tau \in [-1, 1]$ 上

$$\tau = -1 + \frac{2(t - t_0)}{t_f - t_0} \tag{8}$$

这里令
$$t_0 = 0$$
,则式(8)化简为
2 t_1 ,

$$\tau = \frac{2t}{t_f} - 1 \tag{9}$$

Gauss伪谱法利用Lagrange插值多项式对状态变量 和控制变量进行近似。在区间(-1,1)内设置N个 Legendre-Gauss(LG)点

$$\tau_i = Roots(\dot{P}_{N-1}(\tau))(i=1,\cdots,N)$$
(10)

其中: $\dot{P}_{N-1}(\tau)$ 表示N-1阶Legendre多项式的导数, LG点为该多项式在区间(-1,1)内的根。则[-1,1]上状态 变量和控制变量的近似值 $\hat{X}(\tau)$ 和 $\hat{U}(\tau)$ 可写作

$$\boldsymbol{X}(\tau) \approx \hat{\boldsymbol{X}}(\tau) = \sum_{i=0}^{N} \hat{\boldsymbol{X}}(\tau_i) L_i(\tau)$$
(11)

$$\boldsymbol{U}(\tau) \approx \hat{\boldsymbol{U}}(\tau) = \sum_{i=1}^{N} \hat{\boldsymbol{U}}(\tau_i) L_i^*(\tau)$$
(12)

其中: $\hat{X}(\tau_i)$ 为在第*i*个LG点(*i*=0时为初始点)上的状态 变量; $\hat{U}(\tau_i)$ 为在第*i*个LG点上的控制变量; Lagrange插值多项式 $L_i(\tau)$ 和 $_i^*(\tau)$ 的定义为

$$L_{i}(\tau) = \prod_{j=0, j \neq i}^{N} \frac{\tau - \tau_{j}}{\tau_{i} - \tau_{j}}, \, i = 0, \cdots, N$$
(13)

$$L_{i}^{*}(\tau) = \prod_{j=1, j \neq i}^{N} \frac{\tau - \tau_{j}}{\tau_{i} - \tau_{j}}, \, i = 1, \cdots, N$$
(14)

末 端 状 态 的 近 似 值 则 需 要 通 过 动 力 学 方 程 $\dot{X}(\tau) = f(X(\tau), u(\tau), \tau)$ 求得。将

$$oldsymbol{X}\left(au_{f}
ight) = oldsymbol{X}\left(au_{0}
ight) + \int_{-1}^{1}f(oldsymbol{X}\left(au
ight),oldsymbol{u}(au), au)\mathrm{d} au$$

离散化可得

$$\boldsymbol{X}(\tau_{f}) = \boldsymbol{X}(\tau_{0}) - \frac{t_{f}}{2} \sum_{i=1}^{N} \omega_{i} f(\hat{\boldsymbol{X}}(\tau_{i}), \hat{\boldsymbol{U}}(\tau_{i}),$$

$$\tau_{i}; t_{0}, t_{f})$$
(15)

其中:
$$\omega_i = \int_{-1}^{1} L_i(\tau) d\tau$$
为Gauss求积权重; τ_i 表示各

LG点。这样原最优控制问题的状态和控制约束可表示为

$$l_h \leq h(\hat{\boldsymbol{X}}(\tau), \, \hat{\boldsymbol{U}}(\tau)) \leq u_h \tag{16}$$

其中: u_h和l_h分别表示这些约束的上、下界。

为使状态变量始终满足动力学方程约束,动力学 方程的左端通过在LG点处对状态的近似值求导进行 近似

$$\dot{\boldsymbol{X}}(\tau) \approx \frac{2}{t_f} \sum_{i=0}^{N} \hat{\boldsymbol{X}}(\tau_i) \dot{\boldsymbol{L}}_i(\tau)$$
(17)

其中 $\dot{L}_i(\tau)$ 为

$$\dot{L}_{i}(\tau) = \sum_{l=0}^{N} \frac{\prod_{j=0, j \neq i, l}^{N} (\tau - \tau_{j})}{\prod_{j=0, j \neq i}^{N} (\tau_{i} - \tau_{j})}$$
(18)

于是,动力学微分方程约束就转换为代数形式

$$\sum_{i=0}^{N} \dot{L}_{i}(\tau) \hat{\boldsymbol{X}}(\tau_{i}) - \frac{t_{f}}{2} f(\hat{\boldsymbol{X}}(\tau_{i}), \hat{\boldsymbol{U}}(\tau_{i}), \tau_{i}; t_{0}, t_{f}) = 0 \quad (19)$$

这样, 经过在LG点进行离散化,并利用 Lagrange插值多项式对状态变量和控制变量进行全局 近似后,原最优控制问题的边值约束和路径约束转化 为式(16)的形式,微分方程形式的动力学约束由式 (1)的动态形式转化为式(19)的静态代数约束形式。原 动态连续最优控制问题转化为静态的非线性规划问 题,可以使用非线性规划问题的求解工具方便地进行 解算。

3 数学仿真与分析

以小行星Eros 433为目标小天体,利用Gauss伪谱 法进行下降和着陆阶段燃耗最优轨迹优化仿真。仿真 中用到的Eros 433小行星的物理参数如表1所示,引力 场采用4阶模型。参照文献[7],探测器的发动机比冲 设为300 s,最大推力设为22 N,仿真中采用的边界条 件如表2所示^[8]。

仿真得到的优化结果如图1~图5所示。其中,图1 为探测器三轴位置的时间历程,图2为三轴速度大小的 时间历程,图3为三轴推力大小的时间历程,图4为总 推力大小的时间历程,图5为得到的燃耗最优下降轨 迹。优化得到的末端时刻探测器的质量为793.7 kg,即

表 1 433 Eros小行星物理参数

Table 1 Physical parameters of 433 Eros

		v 1			
自转角速度	取值/(rad·s ⁻¹)	名义半径	取值/km	引力常数	取值/(m ³ ·s ⁻²)
ω	3.311 7×10 ⁻⁴	а	16	$\mu = GM$	446 210

第3卷

表 2 仿真采用的边界条件 Table 2 Initial and final states in the simulation

时刻	x/m	y/m	z/m	$v_x/(\mathbf{m}\cdot\mathbf{s}^{-1})$	$v_{y}/(m \cdot s^{-1})$	$v_{\rm z}/({\rm m}\cdot{\rm s}^{-1})$	<i>m</i> /kg
t=0	10 177	6 956	8 256	-12	-6	-9	800
$t=t_f$	853	5 010	45	0	0	0	≥480

消耗燃料6.3 kg; $t_f = 1 237$ s, 即下降和着陆过程持续 1 237 s.

从以上数学仿真结果可以看出:

1)优化结果满足各项约束条件。经过1237s,探 测器以零速度软着陆于预设着陆点,着陆时刻探测器 质量大于探测器干重,同时优化得到的控制力始终在 设定的发动机推力上限之内。

2)从图3、图4可以看到,发动机在下降和着陆过 程的初始和后半阶段处于点火状态,在中间阶段有近

400 s的时间内不产生推力,以降低燃耗。在发动机工作的时段,虽然发动机的三轴推力大小不断变化,但总推力的大小基本保持在22 N,即发动机在点火工作时处于最大推力状态,只是推力方向不断变化。

3)从图4显示的最优轨迹解算结果看,发动机在下降的初始阶段点火初步降低探测器速度,但探测器基本沿原轨迹上向小行星表面运行,在着陆阶段再次点火对探测器进行持续制动,并使其改变方向落向目标着陆点,最终实现软着陆。整个下降与着陆过程符合燃耗最优目标的预期。

4 结 论

本文针对小天体着陆或采样返回探测中的下降和 着陆阶段,基于伪谱法进行了燃耗最优下降轨迹优 化,得到了符合初始和末端状态约束、动力学约束和 控制约束的燃耗最优下降轨迹。首先对最优下降轨迹 问题进行数学描述,给出了小天体探测下降阶段的动 力学模型,建立了包括边值约束和路径约束在内的各 项约束条件和燃耗最优指标函数,得出轨迹优化的原 始连续最优控制问题。然后利用Gauss伪谱法对此最优 控制问题进行离散化,将其转化为离散的非线性规划 问题。Gauss伪谱法避免了间接法的推导复杂,以及协 态变量无物理意义不易猜测的问题,对初始值不敏 感,节约了计算时间,是一种快速、高精度的轨迹优 化方法。数学仿真结果显示,采用Gauss伪谱法得到的 最优下降轨迹以零速度到达预定着陆点,符合各项约 束条件,并通过发动机分阶段工作的方式达到优化燃 耗的目标。

参考文献

- [1] 崔平远, 乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力 学进展, 2013, 43(5): 526–539.
 Cui P Y, Qiao D. State-of-the-art and prospects for orbital dynamics and control near small celestial bodies[J]. Advances in Mechanics, 2013, 43 (5): 526–539.
- [2] Dunham David W, Farquhar Robert W, McAdams James V, et al. Implementation of the first asteroid landing[J]. Icarus, 2002, 159(2): 433–438.
- [3] Uo M, Shirakawa K, Hashimoto T, et al. Hayabusa's touching-down to Itokawa—autonomous guidance and navigation[J]. The Journal of Space Technology and Science, 2006, 22(1): 41.

 [4] 雍恩米,陈磊,唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报, 2008, 29(2): 397-406.
 Yong E M, Chen L, Tang G J. A survey of numerical methods for

trajectory optimization of spacecraft[J]. Journal of Astronautics, 2008, 29(2): 397–406.

- [5] Stephen Broschart, Daniel Scheeres, Spacecraft descent and translation in the small-body fixed frame[M]. [S.L]: American Institute of Aeronautics and Astronautics, 2004.
- [6] 张万里. 轨道转移飞行器的轨迹优化与制导算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
 Zhang W L. Research on trajectory optimization and guidance of orbital transfer vehicle[D]. Harbin: Harbin Institute of Technology, 2001.
- [7] 崔平远,朱圣英,崔祜涛.小天体自主软着陆脉冲机动控制方法研究[J]. 宇航学报, 2008, 29(2): 511-516.

Cui P Y, Zhu S Y, Cui H T. Autonomous impulse maneuver control method for soft landing on small bodies[J]. Journal of Astronautics, 2008, 29(2): 511–516.

作者简介:

袁 旭(1986-),男,博士研究生。主要研究方向:深空探测器自主 导航与控制。 通信地址:北京理工大学宇航学院22信箱(100081) 电话: (010)68918910 E-mail: lianlin.li@pku.edu.cn

Small Body Descent Trajectory Optimization Based on Pseudospectral Method

YUAN Xu^{1, 2, 3}, ZHU Shengying^{1, 2, 3}

(1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;

2. Key Laboratory of Autonomous Navigation and Control for Deep Space Exploration, Ministry of Industry and Information Technology, Beijing

100081,China;

3. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China)

Abstract: Aimed at the multiple-constraint trajectory optimization problem in the descent phase of small body landing exploration, Gauss pseudospectral method is used for the optimization design and the fuel-optimal descent trajectory is derived. The optimal control model of small body descent trajectory optimization problem is established and discretized using Gauss pseudospectral method. The problem is then solved by transforming into a nonlinear programming problem. Mathematical simulation results show that all the constraints are satisfied, the optimization index of fuel consumption is minimized and the spacecraft reaches the target landing site with zero velocity. Using Gauss Pseudospectral method, the computation process of small body descent trajectory optimization is fast and has high solution accuracy.

Key words: small body; descent; landing; trajectory optimization; Gauss pseudospectral method

[责任编辑: 宋宏]