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Abstract: In this paper, targeting the solar system boundary exploration mission, the scientific objectives of the mission were

formulated by addressing multiple scientific issues such as the formation and evolution of the solar system, heliospheric physics, and

interstellar medium properties. Based on these objectives, a requirement analysis was conducted, a preliminary mission concept was

proposed, and an overall plan for two exploration missions—the “Nose” (nose-first approach) and “Tail” (trailing approach)

missions—was developed. Both missions will be launched using the Long March 5 rocket, with the “Nose” mission following a

flight sequence of Earth-Earth-Jupiter and the “Tail” mission following Earth-Jupiter. Based on this framework, focusing on mission

challenges, key technical aspects—including detector platform design, nuclear power system design, and scientific payload

configuration—were elaborated and a detector design scheme based on a 1 kWe-class space reactor power source was proposed. This

study can provide reference for the implementation of China’s solar system boundary exploration projects.

Keywords: interstellar boundary exploration; mission planning; nuclear-powered detector; key technology

Highlights:

situ detection of the solar system boundary through two missions: “Nose” (nose-first approach) and “Tail” (trailing approach).

Conducted mission requirement analysis, completed trajectory design, and developed overall mission planning.
Proposed an overall design for a nuclear-powered detector based on a 1 kWe-class space heat pipe reactor power source.

Analyzed key technologies urgently requiring breakthroughs for solar system boundary exploration.

Analyzed the scientific objectives of the solar system boundary exploration mission and determined to achieve comprehensive in-
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