中文核心期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深空探测器自主控制技术综述

王大轶 符方舟 孟林智 李文博 李茂登 徐超 葛东明

王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明. 深空探测器自主控制技术综述[J]. 深空探测学报(中英文), 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
引用本文: 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明. 深空探测器自主控制技术综述[J]. 深空探测学报(中英文), 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
WANG Dayi, FU Fangzhou, MENG Linzhi, LI Wenbo, LI Maodeng, XU Chao, GE Dongming. Research of Autonomous Control Technology for Deep Space Probes[J]. Journal of Deep Space Exploration, 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
Citation: WANG Dayi, FU Fangzhou, MENG Linzhi, LI Wenbo, LI Maodeng, XU Chao, GE Dongming. Research of Autonomous Control Technology for Deep Space Probes[J]. Journal of Deep Space Exploration, 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002

深空探测器自主控制技术综述

doi: 10.15982/j.issn.2095-7777.2019.04.002
基金项目: 国家杰出青年科学基金资助项目(61525301);国家自然科学基金资助项目(61690215,61640304,61573060,61203093)

Research of Autonomous Control Technology for Deep Space Probes

  • 摘要: 深空探测是人类考察、勘探和定居地球外其它天体的第1步,而深空探测器的自主控制技术则是确保深空探测任务成功完成的重要关键技术之一。从“自主导航、自主制导与控制、自主任务规划、自主故障诊断与重构”4个方面对深空探测器自主控制技术的研究现状进行综述,分析了已有的深空探测器自主控制技术存在的问题,并根据深空探测技术发展和任务实施的需求,提出了深空探测器自主控制技术未来研究的发展趋势。
  • [1] 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018, 478(10):6-12. YE P J, ZOU L Y, WANG D Y, et al. Development and prospect of Chinese deep space exploration[J]. Space International, 2018, 478(10):6-12.
    [2] 王大轶, 孟林智, 叶培建, 等. 深空探测器的自主运行技术研究[J]. 航天器工程, 2018, 27(6):1-10. WANG D Y, MENG L Z, YE P J, et al. Research of autonomous operation technology for deep space probe[J]. Spacecraft Engineering, 2018, 27(6):1-10.
    [3] 孙泽洲. 深空探测技术[M]. 北京:北京理工大学出版社, 2018. SUN Z Z. The technology of deep space exploration[M]. Beijing:Beijing Institute of Technology Press, 2018.
    [4] 孟林智, 董捷, 许映乔, 等. 无人火星取样返回任务关键环节分析[J]. 深空探测学报, 2016, 3(2):114-120. MENG L Z, DONG J, XU Y Q, et al. Analysis of key technologies for unmanned Mars sample return mission[J]. Journal of Deep Space Exploration, 2016, 3(2):114-120.
    [5] 叶培建, 果琳丽, 张志贤, 等. 有人参与深空探测任务面临的风险和技术挑战[J]. 载人航天, 2016, 22(2):143-149. YE P J, GUO L L, ZHANG Z X, et al. Risks and challenges of manned deep space exploration mission[J]. Manned Spaceflight, 2016, 22(2):143-149.
    [6] YE P J,SUN Z Z,RAO W,et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China Technological Sciences, 2017, 60(5):649-657.
    [7] 叶培建, 杨孟飞, 彭兢, 等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学:技术科学, 2015, 45(3):229-238. YE P J, YANG M F, PENG J, et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. Scientia Sinica Technologica, 2015, 45(3):229-238.
    [8] 饶炜, 孙泽洲, 孟林智, 等. 火星着陆探测任务关键环节技术途径分析[J]. 深空探测学报, 2016, 3(2):121-128. RAO W, SUN Z Z, MENG L Z, et al. Analysis and design for the Mars entry, descent and landing mission[J]. Journal of Deep Space Exploration, 2016, 3(2):121-128.
    [9] 李莹, 叶培建, 彭兢, 等. 火星探测出舱机构的识别定位与坡度测量[J]. 宇航学报, 2016, 37(2):169-174. LI Y, YE P J, PENG J, et al. Egress mechanism recognition and slope measurement for Mars exploration[J]. Journal of Astronautics, 2016, 37(2):169-174.
    [10] 孙泽洲, 孟林智. 中国深空探测现状及持续发展趋势[J]. 南京航空航天大学学报, 2015, 47(6):108-113. SUN Z Z, MENG L Z. Current situation and sustainable development trend of deep space exploration in China[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(6):108-113.
    [11] 叶培建, 黄江川, 孙泽洲, 等. 中国月球探测器发展历程和经验初探[J]. 中国科学:技术科学, 2014, 44(6):543-558. YE P J, HUANG J C, SUN Z Z, et al. The process and experience in the development of Chinese lunar probe[J]. Scientia Sinica Technologica, 2014, 44(6):543-558.
    [12] WANG D Y,LI M D,HUANG X Y. Analytical solutions of generalized triples algorithm for flush air-data sensing systems[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(5):1314-1320.
    [13] WANG D Y, LI M D, HUANG X Y, et al. Kalman filtering for a quadratic form state equality constraint[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):951-958.
    [14] 李莹, 叶培建, 彭兢, 等. 基于火星探测的人工标志识别定位[J]. 光学精密工程, 2015, 23(2):566-572. LI Y, YE P J, PENG J, et al. Artificial target recognition and location based on Mars exploration[J]. Optics and Precision Engineering, 2015, 23(2):566-572.
    [15] 于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(2):108-113. YU D Y, SUN Z Z, MENG L Z, et al. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration, 2016, 3(2):108-113.
    [16] 吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学:信息科学, 2019, 49(1):1-16. WU W R, YU D Y, HUANG J C, et al. Exploring the solar system boundary[J]. Scientia Sinica Information, 2019, 49(1):1-16.
    [17]

    房建成. 宁晓琳, 田玉龙. 航天器自主天文导航原理与方法[M]. 北京:国防工业出版社, 2017.

    [18] 潘科炎. 航天器的自主导航技术[J]. 航天控制, 1994(2):18-27. PAN K Y. Autonomous navigation technique for spacecrafts[J]. Aerospace Control, 1994(2):18-27.
    [19] 李俊峰, 崔文, 宝音贺西. 深空探测自主导航技术综述[J]. 力学与实践, 2012, 34(2):1-9. LI J F, CUI W, BAOYIN H X. A survey of autonomous navigation for deep space exploration[J]. Mechanics and Engineering, 2012, 34(2):1-9.
    [20] LI S, CUI P Y, CUI H T. Autonomous navigation and guidance for landing on asteroids[J]. Aerospace Science and Technology, 2006, 10(3):239-247.
    [21] 王大轶, 胡启阳, 胡海东, 等. 非合作航天器自主相对导航研究综述[J]. 控制理论与应用, 2018, 35(10):5-17. WANG D Y, HU Q Y, HU H D, et al. Review of autonomous relative navigation for non-cooperative spacecraft[J]. Control Theory & Applications, 2018, 35(10):5-17.
    [22] 王大轶, 李茂登, 黄翔宇. 火星进入段自主导航技术研究综述[J]. 空间控制技术与应用, 2016, 42(5):1-7. WANG D Y, LI M D, HUANG X Y. Review of the Mars atmospheric entry autonomous navigation technology[J]. Aerospace Control and Application, 2016, 42(5):1-7.
    [23] 冀红霞, 宗红, 黄翔宇. 基于特征值分解的小天体着陆自主导航系统可观度分析[J]. 空间控制技术与应用, 2019, 45(1):1-8. JI H X, ZHONG H, HUANG X Y. Observability analysis of small celestial autonomous landing navigation system based on eigenvalue decomposition[J]. Aerospace Control and Application, 2019, 45(1):1-8.
    [24] 王大轶, 徐超, 黄翔宇. 深空探测着陆过程序列图像自主导航综述[J]. 哈尔滨工业大学学报, 2016, 48(4):1-12. WANG D Y, XU C, HUANG X Y. Overview of autonomous navigation based on sequential images for planetary landing[J]. Journal of Harbin Institute of Technology, 2016, 48(4):1-12.
    [25] 王大轶, 李茂登, 黄翔宇, 等. 航天器多源信息融合自主导航技术[M]. 北京:北京理工大学出版社, 2018. WANG D Y, LI M D, HUANG X Y, et al. Spacecraft autonomous navigation technology based on multi-source information fusion[M]. Beijing:Beijing Institute of Technology Press, 2018.
    [26] 王大轶, 魏春岭, 熊凯. 航天器自主导航技术[M]. 北京:国防工业出版社, 2017. WANG D Y, WEI C L, XIONG K. Autonomous navigation technology for spacecraft[M]. Beijing:National Defense Industry Press, 2017.
    [27] MOURIKIS A I, TRAWNY N, ROUMELIOTIS S I, et al. Visionaided inertial navigation for spacecraft entry, descent, and landing[J]. IEEE Transactions on Robotics, 2009, 25(2):264-280.
    [28] LI S, CUI P Y, CUI H T. Vision-aided inertial navigation for pinpoint planetary landing[J]. Aerospace Science and Technology, 2007, 11(6):499-506.
    [29] 周姜滨, 袁建平, 岳晓奎, 等. 一种快速精确的捷联惯性导航系统静基座自主对准新方法研究[J]. 宇航学报, 2008, 29(1):133-137, 149. ZHOU J B, YUAN J P, YUE X K, et al. A new fast and precision approach for SINS stationary serf-alignment[J]. Journal of Astronautics, 2008, 29(1):133-137, 149.
    [30] YU M, LI S, HUANG X Y, et al. A novel inertial-aided feature detection model for autonomous navigation in planetary landing[J]. Acta Astronautica, 2018(152):667-681.
    [31] 吴伟仁, 李骥, 黄翔宇, 等. 惯导/测距/测速相结合的安全软着陆自主导航方法[J]. 宇航学报, 2015, 36(8):893-899. WU W R, LI J, HUANG X Y, et al. INS/rangefinder/velocimetry based autonomous navigation method for safe landing[J]. Journal of Astronautics, 2015, 36(8):893-899.
    [32] 宋利芳, 房建成. 基于UPF的航天器自主天文导航方法[J]. 航天控制, 2005, 23(6):31-34 SONG L F, FANG J C. Spacecraft autonomous celestial navigation based on the unscented particle filter[J]. Aerospace Control, 2005, 23(6):31-34.
    [33] 王鹏, 张迎春. 基于天文/GPS的HEO卫星自主导航方法[J]. 控制与决策, 2015, 30(3):519-525. WANG P, ZHANG Y C. Autonomous navigation method of high elliptical orbit satellite based on celestial navigation and GPS[J]. Control and Decision, 2015, 30(3):519-525.
    [34] 张瑜, 房建成. 基于Unscented卡尔曼滤波器的卫星自主天文导航研究[J]. 宇航学报, 2003, 24(6):646-650. ZHANG Y, FANG J C. Study of the satellite autonomous celestial navigation based on the unscented Kalman filter[J]. Journal of Astronautics, 2003, 24(6):646-650.
    [35] 熊凯, 魏春岭, 刘良栋. 基于脉冲星的空间飞行器自主导航技术研究[J]. 航天控制, 2007, 25(4):36-40. XIONG K, WEI C L, LIU L D. Research on the spacecraft autonomous navigation using pulsars[J]. Aerospace Control, 2007, 25(4):36-40.
    [36] 李建军, 王大轶. 摄动因素对火星环绕段轨道长期影响研究[J]. 深空探测学报, 2017, 4(1):77-81. LI J J, WANG D Y. The analysis for long-term influence of perturbations on orbit around Mars[J]. Journal of Deep Space Exploration, 2017, 4(1):77-81.
    [37] 李建军, 王大轶. 一种图像辅助火星着陆段自主导航方法[J]. 宇航学报, 2016, 37(6):687-694. LI J J, WANG D Y. An image-based autonomous navigation method for precise landing on Mars[J]. Journal of Astronautics, 2016, 37(6):687-694.
    [38] 李建军, 王大轶. 基于信息融合的火星环绕段自主导航方法[J]. 航天控制, 2016, 34(5):27-32. LI J J, WANG D Y. Information-fusion-integrated navigation for satellite around Mars[J]. Aerospace Control, 2016, 34(5):27-32.
    [39] XU C, WANG D Y, HUANG X Y. Landmark-based autonomous navigation for pinpoint planetary landing[J]. Advances in Space Research, 2016, 58(11):2313-2327.
    [40] XU C, WANG D Y, HUANG X Y. Autonomous navigation based on sequential images for planetary landing in unknown environments[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10):2587-2602.
    [41] BATTIN R H. Astronautical guidance[M]. New York-San FranciscoToronto-London:McGraw-Hill, 1964.
    [42] 孙泽洲, 张廷新, 张熇, 等. 嫦娥三号探测器的技术设计与成就[J]. 中国科学:技术科学, 2014, 44(4):331-343. SUN Z Z, ZHANG T X, ZHANG H, et al. The technical design and achievements of Chang' E-3 probe[J]. Scientia Sinica Technologica, 2014, 44(4):331-343.
    [43] 叶培建, 孙泽洲, 张熇, 等. 嫦娥四号探测器系统任务设计[J]. 中国科学:技术科学, 2019, 49(2):138-146. YE P J, SUN Z Z, ZHANG H, et al. Mission design of Chang' e-4 probe system[J]. Scientia Sinica Technologica, 2019, 49(2):138-146.
    [44] 王大轶, 黄翔宇, 魏春玲. 基于光学成像测量的深空探测自主控制原理与技术[M]. 北京:中国宇航出版社, 2012.
    [45] 郭敏文, 李茂登, 黄翔宇, 等. 非一致终端约束下火星大气进入段制导律设计[J]. 深空探测学报, 2017, 4(2):184-189. GUO M W, LI M D, HAUNG X Y, et al. On guidance algorithm for Martian atmospheric entry in nonconforming terminal constraints[J]. Journal of Deep Space Exploration, 2017, 4(2):184-189.
    [46] 何英姿, 魏春岭, 汤亮. 空间操作控制技术研究现状及发展趋势[J]. 空间控制技术与应用, 2014, 40(1):1-8. HE Y Z, WEI C L, TANG L. A survey on space operations control[J]. Aerospace Control and Application, 2014, 40(1):1-8.
    [47] JIANG X Q, LI S. Enabling technologies for Chinese Mars lander guidance system[J]. Acta Astronautica, 2017(133):375-386.
    [48] LI S,JIANG X Q,LIU Y F. Innovative Mars entry integrated navigation using modified multiple model adaptive estimation[J]. Aerospace Science and Technology, 2014(39):403-413.
    [49] YAN H, TAN S P, HE Y Z. A small-gain method for integrated guidance and control in terminal phase of reentry[J]. Acta Astronautica, 2017(132):282-292.
    [50] 黄翔宇, 李茂登. 月球和火星探测任务捕获制动控制技术方案对比[J]. 载人航天, 2018, 24(4):464-469. HUANG X Y, LI M D. Comparison of capture and brake control schemes for lunar and Mars exploration[J]. Manned Spaceflight, 2018, 24(4):464-469.
    [51] 董天舒, 何英姿. 基于增益分配的航天器高精度指向跟踪控制[J]. 航天控制, 2016, 34(1):50-56. DONG T S, HE Y Z. A high precision attitude pointing tracking control for spacecraft based on the gain schedule[J]. Aerospace Control,2016, 34(1):50-56.
    [52] 孙泽洲, 张熇, 贾阳, 等. 嫦娥三号探测器地面验证技术[J]. 中国科学:技术科学, 2014, 44(4):369-376. SUN Z Z, ZHANG H, JIA Y, et al. Ground validation technologies for Chang' E-3 lunar spacecraft[J]. Scientia Sinica Technologica, 2014, 44(4):369-376.
    [53] LIU H L, HE Y Z, YAN H, et al. Tether tension control law design during orbital transfer via small-gain theorem[J]. Aerospace Science and Technology, 2017(63):191-202.
    [54] 崔祜涛, 崔平远. 软着陆小行星的自主导航与制导[J]. 宇航学报, 2002, 23(5):1-4. CUI H T, CUI P Y. Autonomous navigation and guidance for softlanding asteroid[J]. Journal of Astronautics, 2002, 23(5):1-4.
    [55] 张晓文, 王大轶, 黄翔宇. 深空探测转移轨道自主中途修正方法研究[J]. 空间控制技术与应用, 2009, 35(4):27-33. ZHANG X W, WANG D Y, HUANG X Y. Study on the autonomous midcourse correction during cruise phase of interplanetary exploration[J]. Aerospace Control and Application, 2009, 35(4):27-33.
    [56] 李智斌. 航天器智能自主控制技术发展现状与展望[J]. 航天控制, 2002, 20(4):1-7. LI Z B. Current situation and prospective of intelligent autonomous control for spacecrafts[J]. Aerospace Control, 2002, 20(4):1-7.
    [57] 吴宏鑫, 胡军, 解永春. 航天器智能自主控制研究的回顾与展望[J]. 空间控制技术与应用, 2016, 42(1):1-6. WU H X, HU J, XIE Y C. Spacecraft intelligent autonomous control:past, present and future[J]. Aerospace Control and Application, 2016, 42(1):1-6.
    [58] 吴宏鑫, 谈树萍. 航天器控制的现状与未来[J]. 空间控制技术与应用, 2012, 38(5):1-7. WU H X, TAN S P. Spacecraft control:present and future[J]. Aerospace Control and Application, 2012, 38(5):1-7.
    [59] 于正湜, 崔平远. 行星着陆自主导航与制导控制研究现状与趋势[J]. 深空探测学报, 2016, 3(4):345-355. YU Z S, CUI P Y. Research status and developing trend of the autonomous navigation, guidance, and control for planetary landing[J]. Journal of Deep Space Exploration, 2016, 3(4):345-355.
    [60] 黄翔宇, 张洪华, 王大轶, 等."嫦娥三号" 探测器软着陆自主导航与制导技术[J]. 深空探测学报, 2014, 1(1):52-59. HUANG X Y, ZHANG H H, WANG D Y, et al. Autonomous navigation and guidance for Chang' E-3 soft landing[J]. Journal of Deep Space Exploration, 2014, 1(1):52-59.
    [61] 张洪华, 梁俊, 黄翔宇, 等. 嫦娥三号自主避障软着陆控制技术[J]. 中国科学:技术科学, 2014, 44(6):559-568. ZHANG H H, LIANG J, HUANG X Y, et al. Autonomous hazard avoidance control for Chang'E-3 soft landing[J]. Scientia Sinica Technologica, 2014, 44(6):559-568.
    [62] YE P J, SUN Z Z, ZHANG H, et al. An overview of the mission and technical characteristics of Chang' E-4 lunar probe[J]. Science China Technological Sciences, 2017, 60(5):658-667.
    [63] 吴伟仁, 王琼, 唐玉华, 等."嫦娥4号" 月球背面软着陆任务设计[J]. 深空探测学报, 2017, 4(2):111-117. WU W R, WANG Q, TANG Y H, et al. Design of Chang' E-4 lunar farside soft-landing mission[J]. Journal of Deep Space Exploration, 2017, 4(2):111-117.
    [64] 席政. 人工智能在航天飞行任务规划中的应用研究[J]. 航空学报, 2007, 28(4):791-795. XI Z. Study on mission planning of spaceflight applying artificial intelligence[J]. Acta Aeronautica ET Astronautica Sinica, 2007, 28(4):791-795.
    [65] 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2013, 35(1):13-28. CUI P Y, XU R, ZHU S Y, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica ET Astronautica Sinica, 2013, 35(1):13-28.
    [66] CHOUINARD C, KNIGHT R, JONES G, et al. Orbital express mission operations planning and resource management using ASPEN[C]//SPIE Defense and Security Symposium. Orlando,Florida, United States:SPIE, 2008.
    [67] RABIDEAU G, CHIEN S, MANN T, et al. Interactive, repair-based planning and scheduling for shuttle payload operations[C]//1997 IEEE Aerospace Conference. Aspen, CO, USA, USA:IEEE, 1997.
    [68] SMITH B,MILLAR W,DUNPHY J,et al. Validation and verification of the remote agent for spacecraft autonomy[C]//1999 IEEE Aerospace Conference. Aspen, CO:IEEE, 1999.
    [69] VERFAILLIE G,PRALET C,LEMAÎTRE M. How to model planning and scheduling problems using constraint networks on timelines[J]. The Knowledge Engineering Review, 2010, 25(3):319-336.
    [70] BARREIRO J, BOYCE M, DO M, et al. EUROPA:a platform for AI planning, scheduling, constraint programming, and optimization[C]//4th International Competition on Knowledge Engineering for Planning and Scheduling(ICKEPS).[S.l]:ICKEPS, 2012.
    [71] BEDRAX-WEISS T, MCGANN C, IATAURO M. EUROPA 2:plan database services for planning and scheduling applications[C]//International Conference on Automated Planning and Scheduling. USA:AIAA, 2005.
    [72] LISMAN S, CHANG D, HADAEGH F. Autonomous guidance and control for the new millennium DS-1 spacecraft[C]//Guidance, Navigation, and Control Conference. USA:AIAA, 1996.
    [73] 王大轶, 屠园园, 刘成瑞, 等. 航天器控制系统可重构性的内涵与研究综述[J]. 自动化学报, 2017, 43(10):13-28. WANG D Y, TU Y Y, LIU C R, et al. Connotation and research of reconflgurability for spacecraft control systems:a review[J]. Acta Automatica Sinica, 2017, 43(10):13-28.
    [74] 王大轶, 符方舟, 刘成瑞, 等. 控制系统可诊断性的内涵与研究综述[J]. 自动化学报, 2018, 44(9):3-19. WANG D Y, FU F Z, LIU C R, et al. Connotation and research status of diagnosability of control systems:a review[J]. Acta Automatica Sinica, 2018, 44(9):3-19.
    [75] WANDER A, FÖRSTNER R. Innovative fault detection, isolation and recovery strategies on-board spacecraft:state of the art and research challenges[M].[S. l]:Deutsche Gesellschaft Für Luft-Und Raumfahrt-Lilienthal-Oberthev, 2013.
    [76] WILLIAMSON W R,SPEYER J L,DANG V T,et al. Fault detection and isolation for deep space satellites[J]. Journal of guidance, control, and dynamics, 2009, 32(5):1570-1584.
    [77] 符方舟, 王大轶, 李文博. 复杂动态系统的实际非完全失效故障的可诊断性评估[J]. 自动化学报, 2017, 43(11):1941-1949. FU F Z, WANG D Y, LI W B. Quantitative evaluation of actual LOE fault diagnosability for dynamic systems[J]. Acta Automatica Sinica,2017, 43(11):1941-1949.
    [78] FU F Z,WANG D Y,LI W B,et al. Evaluation of fault diagnosability for dynamic systems with unknown uncertainties[J]. IEEE Access, 2018(6):16737-16745.
    [79] FU F Z, WANG D Y, LIU P, et al. Evaluation of fault diagnosability for networked control systems subject to missing measurements[J]. Journal of the Franklin Institute, 2018, 355(17):8766-8779.
    [80] 屠园园, 王大轶, 李文博. 考虑时间特性影响的控制系统可重构性定量评价方法研究[J]. 自动化学报, 2018, 44(7):1260-1270. TU Y Y, WANG D Y, LI W B. Quantitative reconfigurability evaluation for control systems in view of time properties[J]. Acta Automatica Sinica, 2018, 44(7):1260-1270.
    [81] 屠园园, 王大轶, 李文博. 考虑可靠性影响的受限系统可重构性量化评价[J]. 控制理论与应用, 2017, 34(7):875-884. TU Y Y, WANG D Y, LI W B. Reconfigurability evaluation for a class of constrained systems in consideration of reliability[J]. Control Theory & Applications, 2017, 34(7):875-884.
  • [1] 徐赫屿, 王大轶, 刘成瑞, 李文博, 符方舟, 张科备.  深空探测器可重构性评价与自主重构策略 . 深空探测学报(中英文), 2019, 6(4): 376-383. doi: 10.15982/j.issn.2095-7777.2019.04.010
    [2] 陈略, 谢剑锋, 韩松涛, 曹建峰, 平劲松.  “嫦娥4号”中继星开环测速方案设计与试验验证 . 深空探测学报(中英文), 2019, 6(3): 236-240. doi: 10.15982/j.issn.2095-7777.2019.03.006
    [3] 李春来, 刘建军, 严韦, 封剑青, 任鑫, 刘斌.  小行星探测科学目标进展与展望 . 深空探测学报(中英文), 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
    [4] 宁晓琳, 桂明臻, 孙晓函, 刘劲, 吴伟仁.  一种基于太阳震荡时间延迟量测的自主天文导航方法 . 深空探测学报(中英文), 2019, 6(1): 88-95. doi: 10.15982/j.issn.2095-7777.2019.01.013
    [5] 黄翔宇, 徐超, 胡荣海, 李茂登, 郭敏文, 胡锦昌.  火星精确定点着陆多信息融合自主导航与控制方法研究 . 深空探测学报(中英文), 2019, 6(4): 348-357. doi: 10.15982/j.issn.2095-7777.2019.04.006
    [6] 马辛, 宁晓琳, 刘劲, 刘刚.  一种平面约束辅助测量的深空探测器自主天文导航方法 . 深空探测学报(中英文), 2019, 6(3): 293-300. doi: 10.15982/j.issn.2095-7777.2019.03.014
    [7] 朱安文, 刘飞标, 杜辉, 马世俊.  核动力深空探测器现状及发展研究 . 深空探测学报(中英文), 2017, 4(5): 405-416. doi: 10.15982/j.issn.2095-7777.2017.05.002
    [8] 王春锋.  卫星编队自主相对导航与通信一体化系统探讨 . 深空探测学报(中英文), 2017, 4(1): 38-42. doi: 10.15982/j.issn.2095-7777.2017.01.006
    [9] 王亚敏, 刘银雪, 蒋峻, 孙煜坤, 张永合.  基于引力场不对称性的三体系统轨道自主导航 . 深空探测学报(中英文), 2017, 4(1): 26-30,37. doi: 10.15982/j.issn.2095-7777.2017.01.004
    [10] 欧阳威, 张洪波, 郑伟.  环火星自主导航系统设计及参数优化研究 . 深空探测学报(中英文), 2017, 4(1): 43-50. doi: 10.15982/j.issn.2095-7777.2017.01.007
    [11] 郑伟, 张璐, 王奕迪.  基于星联网的深空自主导航方案设计 . 深空探测学报(中英文), 2017, 4(1): 31-37. doi: 10.15982/j.issn.2095-7777.2017.01.005
    [12] 汪梁, 赵方方, 陈翠桥, 徐照钱.  粒子滤波在自主天文导航系统中的性能评估和应用 . 深空探测学报(中英文), 2016, 3(3): 246-252. doi: 10.15982/j.issn.2095-7777.2016.03.008
    [13] 徐超, 王大轶, 黄翔宇.  基于陆标图像的火星精确着陆自主导航方法研究 . 深空探测学报(中英文), 2016, 3(2): 150-155. doi: 10.15982/j.issn.2095-7777.2016.02.009
    [14] 于正湜, 崔平远.  行星着陆自主导航与制导控制研究现状与趋势 . 深空探测学报(中英文), 2016, 3(4): 345-355. doi: 10.15982/j.issn.2095-7777.2016.04.006
    [15] 陈晓, 尤伟, 黄庆龙.  火星探测巡航段天文自主导航方法研究 . 深空探测学报(中英文), 2016, 3(3): 214-218. doi: 10.15982/j.issn.2095-7777.2016.03.003
    [16] 武长青, 徐瑞, 朱圣英.  基于对数势函数的深空探测器姿态规划与控制方法 . 深空探测学报(中英文), 2015, 2(4): 365-370. doi: 10.15982/j.issn.2095-7777.2015.04.011
    [17] 王大铁, 李骥, 黄翔宇, 张洪华.  月球软着陆过程高精度自主导航避障方法 . 深空探测学报(中英文), 2014, 1(1): 44-51.
    [18] 崔平远, 高艾, 于正湜.  火星着陆自主导航方案研究进展 . 深空探测学报(中英文), 2014, 1(1): 18-27.
    [19] 魏二虎, 杨洪洲, 张帅, 刘经南, 易慧.  脉冲星非实时平差的火星探测自主导航模型 . 深空探测学报(中英文), 2014, 1(4): 298-302. doi: 10.15982/j.issn.2095-7777.2014.04.009
    [20] 黄翔宇, 张洪华, 王大铁, 李骥, 关软峰, 王鹏基.  “嫦娥三号”探测器软着陆自主导航与制导技术 . 深空探测学报(中英文), 2014, 1(1): 52-59.
  • 加载中
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  28
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-13
  • 修回日期:  2019-07-12
  • 刊出日期:  2019-08-01

深空探测器自主控制技术综述

doi: 10.15982/j.issn.2095-7777.2019.04.002
    基金项目:  国家杰出青年科学基金资助项目(61525301);国家自然科学基金资助项目(61690215,61640304,61573060,61203093)

摘要: 深空探测是人类考察、勘探和定居地球外其它天体的第1步,而深空探测器的自主控制技术则是确保深空探测任务成功完成的重要关键技术之一。从“自主导航、自主制导与控制、自主任务规划、自主故障诊断与重构”4个方面对深空探测器自主控制技术的研究现状进行综述,分析了已有的深空探测器自主控制技术存在的问题,并根据深空探测技术发展和任务实施的需求,提出了深空探测器自主控制技术未来研究的发展趋势。

English Abstract

王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明. 深空探测器自主控制技术综述[J]. 深空探测学报(中英文), 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
引用本文: 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明. 深空探测器自主控制技术综述[J]. 深空探测学报(中英文), 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
WANG Dayi, FU Fangzhou, MENG Linzhi, LI Wenbo, LI Maodeng, XU Chao, GE Dongming. Research of Autonomous Control Technology for Deep Space Probes[J]. Journal of Deep Space Exploration, 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
Citation: WANG Dayi, FU Fangzhou, MENG Linzhi, LI Wenbo, LI Maodeng, XU Chao, GE Dongming. Research of Autonomous Control Technology for Deep Space Probes[J]. Journal of Deep Space Exploration, 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
参考文献 (81)

目录

    /

    返回文章
    返回