中文核心期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小行星附近制导与控制研究综述

杨洪伟 宝音贺西

杨洪伟, 宝音贺西. 小行星附近制导与控制研究综述[J]. 深空探测学报(中英文), 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
引用本文: 杨洪伟, 宝音贺西. 小行星附近制导与控制研究综述[J]. 深空探测学报(中英文), 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
YANG Hongwei, BAOYIN Hexi. Review of Guidance and Control in the Vicinity of Asteroids[J]. Journal of Deep Space Exploration, 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
Citation: YANG Hongwei, BAOYIN Hexi. Review of Guidance and Control in the Vicinity of Asteroids[J]. Journal of Deep Space Exploration, 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010

小行星附近制导与控制研究综述

doi: 10.15982/j.issn.2095-7777.2019.02.010
基金项目: 国家自然科学基金资助项目(11525208,11372150)

Review of Guidance and Control in the Vicinity of Asteroids

  • 摘要: 由于小行星具有引力场不规则、物理参数不确定性大、表面逃逸速度小等因素,使得小行星附近制导和控制极具挑战性。回顾了小行星探测任务的历史、现状和意义;针对小行星附近制导与控制研究的基础即小行星附近动力学,分析了研究现状;针对悬停、绕飞、转移、着陆等任务形式,详细介绍了轨道制导和控制方法方面的热点问题和研究现状;基于研究现状,列举了部分未来可进一步研究的方向和问题。
  • [1] 曾祥远,李俊峰. 不规则小行星引力场内的飞行动力学[J]. 力学进展,2017(47):429-451. ZENG X Y,LI J F. Flight dynamics in the gravitational fields of irregular asteroids[J]. Advance in Mechanics,2017(47):429-451
    [2] BARUCCI M A,CHENG A F,MICHEL P,et al. MarcoPolo-R near Earth asteroid sample return mission[J]. Experimental Astronomy, 2012,33(2-3):645-684.
    [3] 徐伟彪,赵海斌. 小行星深空探测的科学意义和展望[J]. 地球科学进展,2005,20(11):31-38. XU W B,ZHAO H B. Deep space exploration of asteroids the science perspectives[J]. Advance in Earth Science,2005,20(11):31-38.
    [4] 于洋,宝音贺西. 小天体附近的轨道动力学研究综述[J]. 深空探测学报,2014,1(2):93-104. YU Y,BAOYIN H X. Review of orbital dynamics in the vicinity of solar system small celestial bodies scientific vision for future missions[J]. Journal of Deep Exploration,2014,1(2):93-104
    [5] LAURETTA D S,TEAM O R. An overview of the OSIRIS-REx asteroid sample return mission[C]//43rd Lunar and Planetary Science Conference. The Woodlands,Texas:[s.n],2012.
    [6] JI J H,LIU L. Revisit of dynamical mechanisms of transporting asteroids in the 3:1 resonance to the near-Earth space[J]. Chinese Journal of Astronomy and Astrophysics,2007,7(1):148.
    [7] 崔平远,乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力学进展,2013,43(5):526-539. CUI P Y,QIAO D. Research progress and prospect of orbital dynamics and control near small bodies[J]. Advances in Mechanics,2013, 43(5):526-539.
    [8] DUNHAM D W,FARQUHAR R W,MCADAMS J V,et al. Implementation of the first asteroid landing[J]. Icarus,2002,159(2):433-438.
    [9] YOSHIMITSU T,KAWAGUCHI J,HASHIMOTO T,et al. Hayabusa-final autonomous descent and landing based on target marker tracking[J]. Acta Astronautica,2009,65(5):657-665.
    [10] KAWAGUCHI J,FUJIWARA A,UESUGI T. Hayabusa-its technology and science accomplishment summary and Hayabusa-2[J]. Acta Astronautica,2008,62(10):639-647.
    [11] RUSSELL C T,RAYMOND C A. The dawn mission to Vesta and Ceres[J]. Space Science Reviews,2011,163(1-4):3-23.
    [12] GLASSMEIER K H,BOEHNHARDT H,KOSCHNY D,et al. The Rosetta mission:flying towards the origin of the Solar system[J]. Space Science Reviews,2007,128(1-4):1-21.
    [13] HUANG J C,JI J H,YE P J,et al. The ginger-shaped asteroid 4179 toutatis:new observations from a successful flyby of Chang'e-2[J]. Scientific Report,2013,3411(3):1-6.
    [14] MONDELO J M,BROSCHART S,VILLAC B. Dynamical analysis of 1:1 resonances near asteroids-application to Vesta[C]//AIAA/AAS Astrodynamics Specialist Conference. Toronto,Ontario,Canada:AIAA,2010.
    [15] 崔平远,袁旭,朱圣英,等. 小天体自主附着技术研究进展[J]. 宇航学报,2016,37(7):759-767. CUI P Y,YUAN X,ZHU S Y,et al. Research progress of small body autonomous landing techniques[J]. Journal of Astronautics,2016,37(7):759-767.
    [16] LANTOINE G,BRAUN R D. Optimal trajectories for soft landing on asteroids[D]. Atlanta,GA:Georgia Institute of Technology, 2006.
    [17] 崔平远,乔栋,朱圣英,等. 行星着陆探测中的动力学与控制研究进展[J]. 航天器环境工程,2014,31(1):1-8. CUI P Y,QIAO D,ZHU S Y,et al. Research progress of dynamics and control for planetary landing[J]. Spacecraft Environment Engineering,2014,31(1):1-8.
    [18] 于洋. 小天体引力场中的轨道动力学与研究[D]. 北京:清华大学, 2014. YU Y. Research on orbital dynamics in the gravitational field of small bodies[D]. Beijing:Tsinghua University,2014.
    [19] SCHEERES D J,WILLIAMS B G,MILLER J K. Evaluation of the dynamic environment of an asteroid:applications to 433 Eros[J]. Journal of Guidance,Control,and Dynamics,2000,23(3):466-475.
    [20] WERNER R A. The gravitational potential of a homogeneous polyhedron or don't cut corners[J]. Celestial Mechanics and Dynamical Astronomy,1994,59(3):253-278.
    [21] WERNER R A,SCHEERES D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomy,1996,65(3):313-344.
    [22] ANTREASIAN P,HELFRICH C,MILLER J,et al. Preliminary planning for near's low-altitude operations at 433 Eros[C]//AAS/AIAA,Astrodynamics Specialist Conference. Girdwood,Alaska:AIAA,1999.
    [23] JIANG Y,BAOYIN H X,LI J F,et al. Orbits and manifolds near the equilibrium points around a rotating asteroid[J]. Astrophysics and Space Science,2014,349(1):83-106.
    [24] YU Y,BAOYIN H X. Generating families of 3D periodic orbits about asteroids[J]. Monthly Notices of the Royal Astronomical Society,2012,427(1):872-881.
    [25] YU Y,BAOYIN H X. Routing the asteroid surface vehicle with detailed mechanics[J]. Acta Mechanica Sinica,2014,30(3):301-309.
    [26] YU Y,BAOYIN H X. Resonant orbits in the vicinity of asteroid 216 Kleopatra[J]. Astrophysics and Space Science,2013,343(1):75-82.
    [27] BROSCHART S B,SCHEERES D J. Control of hovering spacecraft near small bodies:application to asteroid 25143 Itokawa[J]. Journal of Guidance,Control,and Dynamics,2005,28(2):343-354.
    [28] WILLIAMS T,ABATE M. Capabilities of furlable solar sails for asteroid proximity operations[J]. Journal of Spacecraft and Rockets, 2009,46(5):967-975.
    [29] ZENG X Y,JIANG F H,LI J F. Asteroid body-fixed hovering using nonideal Solar sails[J]. Research in Astronomy and Astrophysics, 2015,15(4):597-607.
    [30] YANG H W,ZENG X Y,BAOYIN H X. Feasible region and stability analysis for hovering around elongated asteroids with low thrust[J]. Research in Astronomy and Astrophysics,2015,15(9):1571-1586.
    [31] ZENG X Y,GONG S P,LI J F,et al. Solar sail body-fixed hovering over elongated asteroids[J]. Journal of Guidance,Control,and Dynamics,2016,39(6):1223-1231.
    [32] SAWAI S,SCHEERES D J,BROSCHART S B. Control of hovering spacecraft using altimetry[J]. Journal of Guidance,Control,and Dynamics,2002,25(4):786-795.
    [33] FURFARO R. Hovering in asteroid dynamical environments using higher-order sliding control[J]. Journal of Guidance,Control,and Dynamics,2014,38(2):263-279.
    [34] NAZARI M,WAUSON R,CRITZ T,et al. Observer-based bodyframe hovering control over a tumbling asteroid[J]. Acta Astronautica,2014(102):124-139.
    [35] LIU X,ZHANG P,LIU K,et al. Compensator-based 6-DOF control for probe asteroid-orbital-frame hovering with actuator limitations[J]. Advances in Space Research,2016,57(9):1914-1927.
    [36] WANG Y,XU S. Body-fixed orbit-attitude hovering control over an asteroid using non-canonical Hamiltonian structure[J]. Acta Astronautica,2015(117):450-468.
    [37] LEE D,SANYAL A K,BUTCHER E A,et al. Finite-time control for spacecraft body-fixed hovering over an asteroid[J]. IEEE Transactions on Aerospace and Electronic Systems,2015,51(1):506-520.
    [38] LEE D,VUKOVICH G. Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid[J]. Aerospace Science and Technology,2015(46):471-483.
    [39] WOO P,MISRA A K. Bounded trajectories of a spacecraft near an equilibrium point of a binary asteroid system[J]. Acta Astronautica, 2015(110):313-323.
    [40] WOO P,MISRA A K. Control of spacecraft trajectories near collinear equilibrium points of binary asteroid systems[J]. Journal of Guidance,Control,and Dynamics,2015,39(4):979-984.
    [41] YANG H W,BAOYIN H X,BAI X L,et al. Bounded trajectories near collinear-like equilibrium points of elongated asteroids using linear control[J]. Astrophysics and Space Science,2017,362(2):27.
    [42] SCHEERES D J. Orbit mechanics about asteroids and comets[J]. Journal of Guidance,Control,and Dynamics,2012,35(3):987-997.
    [43] SCHEERES D J,OSTRO S J,HUDSON R S,et al. Dynamics of orbits close to asteroid 4179 Toutatis[J]. Icarus,1998,132(1):53-79.
    [44] HU W D,SCHEERES D J. Periodic orbits in rotating second degree and order gravity fields[J]. Chinese Journal of Astronomy and Astrophysics,2008,8(1):108-118.
    [45] SHANG H B,WU X Y,CUI P Y. Periodic orbits in the doubly synchronous binary asteroid systems and their applications in space missions[J]. Astrophysics and Space Science,2015,355(1):69-87.
    [46] 崔祜涛,史雪岩,崔平远,等. 绕飞弱引力小天体的轨道保持控制[J]. 高技术通讯,2002(3):54-57. CUI H T,SHI X Y,CUI P Y,et al. Orbits maintenance control flying around a small body[J]. High Technology Letters,2002(3):54-57.
    [47] 陈杨. 受复杂约束的深空探测轨道精确设计与控制[D]. 北京:清华大学,2013
    [48] GUELMAN M. Closed-loop control of close orbits around asteroids[J]. Journal of Guidance,Control,and Dynamics,2014,38(5):854-860.
    [49] KIKUCHI S,TSUDA Y,KAWAGUCHI J. Delta-V assisted periodic orbits around small bodies[J]. Journal of Guidance,Control,and Dynamics,2017,40(1):150-163.
    [50] YÁRNOZ G D,CUARTIELLES S J P,MCINNES C R. Alternating orbiter strategy for asteroid exploration[J]. Journal of Guidance, Control,and Dynamics,2015,38(2):280-291.
    [51] LIU X,BAOYIN H X,MA X. Equilibria,periodic orbits around equilibria,and heteroclinic connections in the gravity field of a rotating homogeneous cube[J]. Astrophysics and Space Science, 2011,333(2):409-418.
    [52] YANG H W,GONG S P,BAOYIN H X. Two-impulse transfer orbits connecting equilibrium points of irregular-shaped asteroids[J]. Astrophysics and Space Science,2015,357(1):66.
    [53] SHEN H X,ZHANG T J,LI Z,et al. Multiple-hopping trajectories near a rotating asteroid[J]. Astrophysics and Space Science,2017, 362(3):45.
    [54] SUROVIK D A,SCHEERES D J. Adaptive reachability analysis to achieve mission objectives in strongly non-Keplerian systems[J]. Journal of Guidance,Control,and Dynamics,2015,38(3):468-477.
    [55] YANG H W,BAI X L,BAOYIN H X. Finite-time control for asteroid hovering and landing via terminal sliding-mode guidance[J]. Acta Astronautica,2017(132):78-89.
    [56] HAWKINS M,GUO Y,WIE B. ZEM/ZEV feedback guidance application to fuel-efficient orbital maneuvers around an irregularshaped asteroid[C]//AIAA Guidance,Navigation,and Control Conference. Minneapolis,Minnesota:AIAA,2012.
    [57] HU H J,ZHU S Y,CUI P Y. Desensitized optimal trajectory for landing on small bodies with reduced landing error[J]. Aerospace Science and Technology,2016(48):178-185.
    [58] 江秀强,陶婷,杨威,等. 附着小天体的最优制导控制方法[J]. 深空探测学报,2015,2(1):53-60. JIANG X Q,TAO T,YANG W,et al. Optimal guidance control strategies for spacecraft attaches to a small body[J]. Journal of Deep Space Exploration,2015,2(1):53-60.
    [59] 张鹏. 探测器盘旋/软着陆小天体的自主最优制导与滑模控制方法研究[D]. 吉林:吉林大学,2016. ZHANG P. Research on autonomous optimal guidance and sliding mode control of probe hovering and soft landing on small bodies[D]. Jinlin:Jilin University,2016.
    [60] PINSON R,LU P. Rapid generation of optimal asteroid powered descent trajectories via convex optimization[C]//AAS/AIAA Astrodynamics Specialist Conference. Vail,CO:AIAA,2015.
    [61] ACIKMESE B,PLOEN S R. Convex programming approach to powered descent guidance for mars landing[J]. Journal of Guidance, Control,and Dynamics,2007,30(5):1353-1366.
    [62] LU P,LIU X. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control,and Dynamics,2013,36(2):375-389.
    [63] YANG H W,BAI X L,BAOYIN H X. Rapid generation of timeoptimal trajectories for asteroid landing via convex optimization[J]. Journal of Guidance,Control,and Dynamics,2017,40(3):628-641.
    [64] BLACKMORE L,ACIKMESE B,SCHARF D P. Minimum-landingerror powered-descent guidance for Mars landing using convex optimization[J]. Journal of guidance,control,and dynamics,2010,33(4):1161-1171.
    [65] GUELMAN M,HAREL D. Power limited soft landing on an asteroid[J]. Journal of guidance,control,and dynamics,1994,17(1):15-20.
    [66] YANG H W,BAOYIN H X. Fuel-optimal control for soft landing on an irregular asteroid[J]. IEEE Transactions on Aerospace and Electronic Systems,2015,51(3):1688-1697.
    [67] JIANG F H,BAOYIN H X,LI J F. Practical techniques for lowthrust trajectory optimization with homotopic approach[J]. Journal of Guidance,Control,and Dynamics,2012,35(1):245-258.
    [68] REN Y, SHAN J. Reliability-based soft landing trajectory optimization near asteroid with uncertain gravitational field[J]. Journal of Guidance,Control,and Dynamics,2015,38(9):1810- 1820.
    [69] FURFARO R,CERSOSIMO D,WIBBEN D R. Asteroid precision landing via multiple sliding surfaces guidance techniques[J]. Journal of Guidance,Control,and Dynamics,2013,36(4):1075-1092.
    [70] YANG H W,BAI X L,BAOYIN H X. Rapid trajectory planning for asteroid landing with thrust magnitude constraint[J]. Journal of Guidance,Control,and Dynamics,2017,40(10):2713-2720.
    [71] 崔平远,朱圣英,崔祜涛. 小天体自主软着陆脉冲机动控制方法研究[J]. 宇航学报,2008,29(2):511-516. CUI P Y,ZHU S Y,CUI H T. Autonomous impulse maneuver control method for soft landing on small bodies[J]. Journal of Astronautics,2008,29(2):511-516.
    [72] 刘延杰,朱圣英,崔平远. 小天体安全着陆与表面探测控制方法研究[J]. 深空探测学报,2016,3(4):370-376. LIU Y J,ZHU S Y,CUI P Y. A pulse control strategy of landers for hopping exploration on small bodies[J]. Journal of Deep Space Exploration,2016,3(4):370-376.
    [73] 崔祜涛,史雪岩,崔平远,等. 软着陆小行星的制导与控制规律研究[J]. 飞行力学,2002,20(2):35-38. CUI H T,SHI X Y,CUI P Y,et al. Guidance and control law for soft landing asteroid[J]. Flight Dynamics,2002,20(2):35-38.
    [74] CARSON J,ACIKMESE A. A model-predictive control technique with guaranteed resolvability and required thruster silent times for small-body proximity operations[C]//AIAA Guidance,Navigation, and Control Conference and Exhibit. Keystone,Colorado:AIAA, 2006.
    [75] LI S,CUI P Y,CUI H T. Autonomous navigation and guidance for landing on asteroids[J]. Aerospace science and technology,2006,10(3):239-247.
    [76] 李晓宇. 小行星软着陆动力下降段制导与控制方法研究[D]. 哈尔滨:哈尔滨工业大学,2015. LI X Y. Guidance and control law for asteroid soft landing in power decent phase[D]. Harbin:Harbin Institute of Technology,2015.
    [77] 马天豪. 小行星探测器动力下降段的控制方法研究[D]. 长春:长春工业大学,2015. MA T H. Study on control methods during the power descent period of probe[D]. Changchun:Changchun University of Technology, 2015.
    [78] 胡海静,高艾,朱圣英,等. 考虑跟踪制导的小天体着陆轨迹闭环优化方法[J]. 宇航学报,2015,36(12):1384-1390. HU H J,GAO A,ZHU S Y,et al. Trajectory optimization for precision landing on small bodies considering tracking guidance[J]. Journal of Astronautics,2015,36(12):1384-1390.
    [79] 崔祜涛,史雪岩,崔平远,等. 附着小行星的视线制导规律[J]. 空间科学学报,2002,22(3):256-260. CUI H T,SHI X Y,CUI P Y,et al. Line-of-sight guidance for adhesion asteroid[J]. Chinese Journal of Space Science,2002,22(3):256-260.
    [80] 李爽,崔平远. 着陆小行星的滑模变结构控制[J]. 宇航学报,2005, 26(6):808-812. LI S,CUI P Y. Variable structure with sliding-mode control for landing on asteroids[J]. Journal Of Astronautics,2005,26(6):808-812.
    [81] HUANG X,CUI H,CUI P. An autonomous optical navigation and guidance for soft landing on asteroids[J]. Acta Astronautica,2004,54(10):763-771.
    [82] FENG Y,YU X,HAN F. On nonsingular terminal sliding-mode control of nonlinear systems. Automatica[J]. 2013,49(6):1715- 1722.
    [83] LAN Q,LI S,YANG J,et al. Finite-time soft landing on asteroids using nonsingular terminal sliding mode control[J]. Transactions of the Institute of Measurement and Control,2014,36(2):216-223.
    [84] 刘克平,曾建鹏,赵博,等. 基于Terminal滑模的小行星探测器着陆连续控制[J]. 北京航空航天大学学报,2014(10):1323-1328. LIU K P,ZENG J P,ZHAO B,et al. Continuous control for probe landing based on terminal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2014(10):1323-1328.
    [85] LIU X,SHAN Z,LI Y. Dynamic boundary layer based neural network quasi-sliding mode control for soft touching down on asteroid[J]. Advances in Space Research,2017,59(8),2173-2185.
    [86] 王茜茜,谢慕君,李元春. 基于模糊参数优化的小行星软着陆控制方法研究[J]. 深空探测学报,2015,2(2):162-167. WANG Q Q,XIE M J,LI Y C. Asteroid soft landing control method based on fuzzy optimization parameters[J]. Journal of Deep Space Exploration,2015,2(2):162-167.
    [87] 张鹏,刘小松,董博,等. 探测器软着陆小行星的自适应超螺旋控制[J]. 吉林大学学报(工学版),2016,46(5):1609-1615. ZHANG P,LIU X S,DONG B,et al. Adaptive supper-twisting control for spacecraft soft landing on asteroids[J]. Journal of University (Engineering and Technology Edition)2016,46(5):1609-1615.
    [88] 曹英梅. 小行星探测器着陆段自主导航与控制方法的研究[D]. 长春:长春工业大学,2016. CAO Y M. Study on autonomous navigation and soft landing control methods of asteroid lander[D]. Changchun:Changchun University of technology,2016.
    [89] GUO Y,HAWKINS M,WIE B. Applications of generalized zeroeffort-miss/zero-effort-velocity feedback guidance algorithm[J]. Journal of Guidance,Control,and Dynamics,2013,36(3):810-820.
    [90] 袁旭,朱圣英,崔平远. 小天体自主附着多滑模面鲁棒制导方法研究[J]. 深空探测学报,2015,2(4):345-351. YUAN X,ZHU S Y,CUI P Y. Robust multiple sliding surface guidance method for autonomous small celestial body landing[J]. Journal of Deep Space Exploration,2015,2(4):345-351.
    [91] BELLEROSE J,FURFARO R,CERSOSIMO D O. Sliding guidance techniques for close proximity operations at multiple asteroid systems[C]//AIAA Guidance,Navigation,and Control(GNC)Conference. Boston,MA:AIAA,2013
    [92] 梁春辉. 小天体附近探测器运动的轨道和姿态控制方法研究[D]. 吉林:吉林大学,2015. LIANG C H. Research on orbital attitude control for proximity motion of small body space[D]. Jilin:Jinlin University,2015.
    [93] 胡海静. 行星着陆轨迹规划与制导控制方法研究[D]. 北京:北京理工大学,2016. HU H J. Research on trajectory planning,guidance and control method for planetary landing[D]. Beijing:Beijing Institute of Technology, 2016
    [94] SAWAI S,KAWAGUCHI J,SCHEERES D,et al. Development of a target marker for landing on asteroids[J]. Journal of Spacecraft and Rockets,2001,38(4):601-608.
    [95] TARDIVEL S,SCHEERES D J. Ballistic deployment of science packages on binary asteroids[J]. Journal of Guidance,Control,and Dynamics,2013,36(3):700-709.
    [96] TARDIVEL S,MICHEL P,SCHEERES D J. Deployment of a lander on the binary asteroid(175706)1996 FG3,potential target of the European MarcoPolo-R sample return mission[J]. Acta Astronautica, 2013(89):60-70.
    [97] TARDIVEL S,SCHEERES D J,MICHEL P,et al. Contact motion on surface of asteroid[J]. Journal of Spacecraft and Rockets,2014,51(6):1857-1871.
    [98] HERRERA-SUCARRAT E,PALMER P L,ROBERTS R M. Asteroid observation and landing trajectories using invariant manifolds[J]. Journal of Guidance,Control,and Dynamics,2014,37(3):907-920.
  • [1] 孟占峰, 高珊, 彭兢.  基于轨道任务几何的采样区选择方法 . 深空探测学报(中英文), 2021, 8(3): 1-10. doi: 10.15982/j.issn.2096-9287.2021.20210023
    [2] 王颖, 唐明亮, 郝钏钏, 朱亮聪, 冯继航.  一种适应多目标轨道的运载火箭弹道制导设计方法 . 深空探测学报(中英文), 2020, 7(4): 391-398. doi: 10.15982/j.issn.2095-7777.2020.20200038
    [3] 高梧桐, 谢攀, 鄢建国.  “火卫1”轨道预报与动力学分析 . 深空探测学报(中英文), 2019, 6(6): 570-579. doi: 10.15982/j.issn.2095-7777.2019.06.008
    [4] 李春来, 刘建军, 严韦, 封剑青, 任鑫, 刘斌.  小行星探测科学目标进展与展望 . 深空探测学报(中英文), 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
    [5] 张荣桥, 黄江川, 赫荣伟, 耿言, 孟林智.  小行星探测发展综述 . 深空探测学报(中英文), 2019, 6(5): 417-423,455. doi: 10.15982/j.issn.2095-7777.2019.05.002
    [6] 曹鹏飞, 李维国, 王俊彦, 李海阳.  高精度模型下Halo轨道设计研究 . 深空探测学报(中英文), 2019, 6(3): 277-283. doi: 10.15982/j.issn.2095-7777.2019.03.012
    [7] 李宗良, 高俊, 刘国西, 周成, 汤章阳, 邹达人.  小行星探测电推进系统方案研究 . 深空探测学报(中英文), 2018, 5(4): 347-353. doi: 10.15982/j.issn.2095-7777.2018.04.004
    [8] 于登云, 张玉花, 褚英志, 李昊, 王建炜, 杜冬.  深空探测器模块化结构动力学研究 . 深空探测学报(中英文), 2016, 3(3): 268-274. doi: 10.15982/j.issn.2095-7777.2016.03.011
    [9] 李爽, 陶婷, 江秀强, 张树瑜, 周杰.  月球软着陆动力下降制导控制技术综述与展望 . 深空探测学报(中英文), 2015, 2(2): 111-119. doi: 10.15982/j.issn.2095-7777.2015.02.002
    [10] 姜宇, 张韵, 任兆欣, 宝音贺西, 李恒年.  三小行星系统216 Kleopatra引力场中的动力学 . 深空探测学报(中英文), 2015, 2(4): 352-357. doi: 10.15982/j.issn.2095-7777.2015.04.009
    [11] 杨福全, 赵以德, 李娟, 耿海, 张天平, 周海燕.  主带小行星采样返回任务中的离子电推进应用方案 . 深空探测学报(中英文), 2015, 2(2): 168-173. doi: 10.15982/j.issn.2095-7777.2015.02.011
    [12] 周必磊, 陆希, 尤伟.  载人小行星探测的总体方案设想 . 深空探测学报(中英文), 2015, 2(1): 43-47. doi: 10.15982/j.issn.2095-7777.2015.01.006
    [13] 杨洪伟, 李京阳, 宝音贺西.  全星历模型下拟Halo轨道设计 . 深空探测学报(中英文), 2015, 2(4): 333-337. doi: 10.15982/j.issn.2095-7777.2015.04.006
    [14] 王峰, 杨波, 胡存明, 吴昊, 费晓星.  小行星探测用双谱段相机设计 . 深空探测学报(中英文), 2015, 2(2): 174-179. doi: 10.15982/j.issn.2095-7777.2015.02.012
    [15] 张大鹏, 雷勇军.  深空探测返回舱着陆冲击动力学分析 . 深空探测学报(中英文), 2014, 1(2): 150-155.
    [16] 于洋, 宝音贺西.  小天体附近的轨道动力学研究综述 . 深空探测学报(中英文), 2014, 1(2): 93-104.
    [17] 倪彦硕, 宝音贺西, 李俊峰.  考虑太阳摄动的小行星附近轨道动力学 . 深空探测学报(中英文), 2014, 1(1): 67-74.
    [18] 姜宇, 宝音贺西.  强不规则天体引力场中的动力学研究进展 . 深空探测学报(中英文), 2014, 1(4): 250-261. doi: 10.15982/j.issn.2095-7777.2014.04.002
    [19] 尚海滨, 崔平远, 熊旭, 武小宇.  载人小行星探测目标选择与轨道优化设计 . 深空探测学报(中英文), 2014, 1(1): 36-43.
    [20] AlexanderGUSEV, 孟治国, 平劲松, NataliaPETROVA, HideoHANADA.  多层月球模型的自转动力学与着陆探测 . 深空探测学报(中英文), 2014, 1(3): 175-180. doi: 10.15982/j.issn.2095-7777.2014.03.002
  • 加载中
计量
  • 文章访问数:  839
  • HTML全文浏览量:  14
  • PDF下载量:  453
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-20
  • 修回日期:  2018-01-10
  • 刊出日期:  2019-04-01

小行星附近制导与控制研究综述

doi: 10.15982/j.issn.2095-7777.2019.02.010
    基金项目:  国家自然科学基金资助项目(11525208,11372150)

摘要: 由于小行星具有引力场不规则、物理参数不确定性大、表面逃逸速度小等因素,使得小行星附近制导和控制极具挑战性。回顾了小行星探测任务的历史、现状和意义;针对小行星附近制导与控制研究的基础即小行星附近动力学,分析了研究现状;针对悬停、绕飞、转移、着陆等任务形式,详细介绍了轨道制导和控制方法方面的热点问题和研究现状;基于研究现状,列举了部分未来可进一步研究的方向和问题。

English Abstract

杨洪伟, 宝音贺西. 小行星附近制导与控制研究综述[J]. 深空探测学报(中英文), 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
引用本文: 杨洪伟, 宝音贺西. 小行星附近制导与控制研究综述[J]. 深空探测学报(中英文), 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
YANG Hongwei, BAOYIN Hexi. Review of Guidance and Control in the Vicinity of Asteroids[J]. Journal of Deep Space Exploration, 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
Citation: YANG Hongwei, BAOYIN Hexi. Review of Guidance and Control in the Vicinity of Asteroids[J]. Journal of Deep Space Exploration, 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
参考文献 (98)

目录

    /

    返回文章
    返回