中文核心期刊

中国科学引文数据库核心来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展状态深空探测器任务规划方法

金颢 徐瑞 崔平远 朱圣英

金颢, 徐瑞, 崔平远, 朱圣英. 基于扩展状态深空探测器任务规划方法[J]. 深空探测学报(中英文), 2018, 5(6): 569-574. doi: 10.15982/j.issn.2095-7777.2018.06.010
引用本文: 金颢, 徐瑞, 崔平远, 朱圣英. 基于扩展状态深空探测器任务规划方法[J]. 深空探测学报(中英文), 2018, 5(6): 569-574. doi: 10.15982/j.issn.2095-7777.2018.06.010
JIN Hao, XU Rui, CUI Pingyuan, ZHU Shengying. Mission Planning Approach Based on Extensible States for Deep Space Probes[J]. Journal of Deep Space Exploration, 2018, 5(6): 569-574. doi: 10.15982/j.issn.2095-7777.2018.06.010
Citation: JIN Hao, XU Rui, CUI Pingyuan, ZHU Shengying. Mission Planning Approach Based on Extensible States for Deep Space Probes[J]. Journal of Deep Space Exploration, 2018, 5(6): 569-574. doi: 10.15982/j.issn.2095-7777.2018.06.010

基于扩展状态深空探测器任务规划方法

doi: 10.15982/j.issn.2095-7777.2018.06.010
基金项目: 基础科研计划资助项目(JCKY2016602C018)

Mission Planning Approach Based on Extensible States for Deep Space Probes

  • 摘要: 面对深空探测过程中的不确定性,探测器需要利用任务规划技术实现自主控制。针对深空探测器任务规划中复杂系统功能及耦合操作约束,在状态知识框架的基础上,引入了扩展状态的概念。通过分析探测器任务规划中的约束关系,提出了基于扩展状态的任务规划算法。利用扩展状态结构特点削减了搜索空间,优化了搜索过程,提高了规划搜索的速度。数值仿真结果表明,该算法能够缩减近半的规划步数,加速问题求解进程,提高任务规划的效率。
  • [1] XU R,CUI P Y,XU X F. Realization of multi-agent planning system for autonomous spacecraft[J]. Advances in Engineering Software,2005,36(4):266-272
    [2] 崔平远,徐瑞,朱圣英,等. 深空探测器自主技术发展现状与趋势[J]. 航空学报,2014,35(1):13-28 CUI P Y,XU R,ZHU S Y,et al. The research status and developing tends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):13-28
    [3] XU R,CUI P Y,XU X F,et al. Design for autonomous mission planning system[J]. Aircraft Engineering & Aerospace Technology,2003,75(4):365-371
    [4] TIPALDI M,GLIELMO L. A survey on model-based mission planning and execution for autonomous spacecraft[J]. IEEE Systems Journal,2017,PP(99):1-13
    [5] VALLAT C,ALTOBELLI N,GEIGER B,et al. The science planning process on the Rosetta mission[J]. Acta Astronautica,2017(133):244-257
    [6] MOUSSI A,FRONTON J F,GAUDON P,et al. The Philae lander:science planning and operations[J]. Acta Astronautica,2016(125):92-104
    [7] MORRIS P H,MUSCETTOLA N,RAJAN K,et al. Planning in interplanetary space:theory and practice[C]//International Conference on Artificial Intelligence Planning Systems. USA:AAAI,2000:177-186.
    [8] CHOO T H,MURCHIE S L,BEDINI P D,et al. SciBox,an end-to-end automated science planning and commanding system[J]. Acta Astronautica,2014,93(11):490-496
    [9] 李朝玉,徐瑞. 一种基于时标状态的启发式航天器任务规划算法[J]. 深空探测学报,2015,2(1):20-26 LI Z Y,XU R. Time stamped states based heuristic algorithm for spacecraft mission planning[J]. Journal of Deep Space Exploration,2015,2(1):20-26
    [10] 陈德相,徐文明,杜智远,等. 航天器任务规划中资源约束的可分配处理方法[J]. 深空探测学报,2015,2(2):180-185 CHEN D X,XU W M,DU Z Y,et al. Dispatchable processing method of resource constraint in spacecraft mission planning[J]. Journal of Deep Space Exploration,2015,2(2):180-185
    [11] FRANK J D,CLEMENT B J,CHACHERE J M,et al. The challenge of configuring model-based space mission planners[C]//The 7th International Workshop on Planning and Scheduling for Space. USA:AIAA,2011.
    [12] VIDAL L C,CORTELLESSA G,YORKE-SMITH N. Scheduling and planning applications:selected papers from the spark workshop series[J]. Computational Intelligence,2011,27(1):1-3
    [13] ROGEZ Y,PUGET P,ZINE S,et al. The CONSERT operations planning process for the Rosetta mission[J]. Acta Astronautica,2016(125):212-233
    [14] CHUNG S. Timeline-based mission operations architecture[C]//Spaceops 2012 Conference. Stockholm,Sweden:American Institute of Aeronautics and Astronautics,2012.
    [15] FIKES R,NILSSON N J. Strips:a new approach to the application of theorem proving to problem solving[J]. Artificial Intelligence,1971,2(3):189-203
    [16] CURRIE K,TATE A. O-plan:the open planning architecture[J]. Artificial Intelligence,1991,52(1):49-86
    [17] LABORIE P,GHALLAB M. IxTeT:an integrated approach for plan generation and scheduling[J]. IEEE Symposium on Emerging Technologies&Factory Automation,1995(1):485-495
    [18] FRATINI S,CESTA A. The APSI framework:a platform for timeline synthesis[C]//The 4th International Competition on Knowledge Engineering for Planning and Scheduling.[S.l]:ESA,2012.
    [19] CESTA A,CORTELLESSA G,FRATINI S,et al. Mrspock-steps in developing an end-to-end space application[J]. Computational Intelligence,2015,27(1):83-102
    [20] BARREIRO J,BOYCE M,DO M,et al. Europa:a platform for AI planning,scheduling,constraint programming,and optimization[C]//The 4th International Competition on Knowledge Engineering for Planning and Scheduling.[S.l]:ESA,2012.
    [21] CIALDEA M M,ORLANDINI A UMBRICO A. A formal account of planning with flexible timelines[C]//The 21st International Symposium on Temporal Representation and Reasoning. Verona,Italy:IEEE,2014.
    [22] UMBRICO A,ORLANDINI A,MAYER M C. Enriching a temporal planner with resources and a hierarchy-based heuristic[M]. German:Springer,2015.
    [23] UMBRICO A,CESTA A,MAYER M C,et al. Steps in assessing a timeline-based planner[C]//Xv International Conference of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence. New York:Springer-Verlag,2016.
    [24] MAYER M C,ORLANDINI A. An executable semantics of flexible plans in terms of timed game automata[C]//Temporal Representation and Reasoning (TIME),201522nd International Symposium on. Kassel,Germany:IEEE,2015:160-169.
    [25] MAYER M C,ORLANDINI A,UMBRICO A. Planning and execution with flexible timelines:a formal account[J]. Acta Informatica,2016,53(6-8):649-680.
    [26] 徐文明. 深空探测器自主任务规划方法研究与系统设计[D]. 哈尔滨:哈尔滨工业大学,2006. XU W M. Autonomous mission planning method and system design of deep space explorer[D]. Harbin:Harbin Institute of Technology,2006.
  • [1] 葛丹桐, 朱圣英.  小行星复杂形貌自适应附着轨迹动态规划方法 . 深空探测学报(中英文), 2021, 8(2): 132-139. doi: 10.15982/j.issn.2096-9287.2021.20200072
    [2] 陈超, 徐瑞, 李朝玉.  基于状态差异的火星巡视器快速任务规划修复方法 . 深空探测学报(中英文), 2021, 8(2): 124-131. doi: 10.15982/j.issn.2096-9287.2021.20200075
    [3] 徐瑞, 李朝玉, 朱圣英, 王棒, 梁子璇, 尚海滨.  深空探测器自主规划技术研究进展 . 深空探测学报(中英文), 2021, 8(2): 111-123. doi: 10.15982/j.issn.2096-9287.2021.20210039
    [4] 王鑫, 赵清杰, 徐瑞.  基于知识图谱的深空探测器任务规划建模 . 深空探测学报(中英文), 2021, 8(3): 315-323. doi: 10.15982/j.issn.2096-9287.2021.20210030
    [5] 高宇辉, 师明, 蔡敦波, 张弓.  一种通用型遥操作任务智能规划方法研究 . 深空探测学报(中英文), 2021, 8(2): 140-146. doi: 10.15982/j.issn.2096-9287.2021.20200071
    [6] 陈上上, 关轶峰, 于萍, 李骥, 张晓文.  基于粒子群优化的月球陨石坑探测轨迹规划 . 深空探测学报(中英文), 2020, 7(3): 271-277. doi: 10.15982/j.issn.2095-7777.2020.20191031007
    [7] 姜啸, 徐瑞, 陈俐均.  深空探测器动态约束规划中的外延约束过滤方法研究 . 深空探测学报(中英文), 2019, 6(6): 586-594. doi: 10.15982/j.issn.2095-7777.2019.06.010
    [8] 朱立颖, 叶志玲, 李玉庆, 付中梁, 徐勇.  小天体探测自主绕飞智能规划建模 . 深空探测学报(中英文), 2019, 6(5): 463-469. doi: 10.15982/j.issn.2095-7777.2019.05.007
    [9] 于天一, 费江涛, 李立春, 程肖.  月面巡视器路径规划方法研究 . 深空探测学报(中英文), 2019, 6(4): 384-390. doi: 10.15982/j.issn.2095-7777.2019.04.011
    [10] 金颢, 徐瑞, 崔平远, 朱圣英.  基于状态转移图的启发式深空探测器任务规划方法 . 深空探测学报(中英文), 2019, 6(4): 364-368. doi: 10.15982/j.issn.2095-7777.2019.04.008
    [11] 姜啸, 徐瑞, 朱圣英.  基于约束可满足的深空探测任务规划方法研究 . 深空探测学报(中英文), 2018, 5(3): 262-268. doi: 10.15982/j.issn.2095-7777.2018.6.008
    [12] 贺波勇, 曹鹏飞, 罗亚中, 李海阳.  环月轨道交会的载人登月任务轨道与窗口规划 . 深空探测学报(中英文), 2017, 4(5): 471-476. doi: 10.15982/j.issn.2095-7777.2017.05.008
    [13] 李群智, 贾阳, 彭松, 韩璐.  月面巡视探测器任务规划顶层设计与实现 . 深空探测学报(中英文), 2017, 4(1): 58-65. doi: 10.15982/j.issn.2095-7777.2017.01.009
    [14] 魏祥泉, 黄建明, 顾冬晴, 陈凤.  火星车自主导航与路径规划技术研究 . 深空探测学报(中英文), 2016, 3(3): 275-281. doi: 10.15982/j.issn.2095-7777.2016.03.012
    [15] 武长青, 徐瑞, 朱圣英.  基于对数势函数的深空探测器姿态规划与控制方法 . 深空探测学报(中英文), 2015, 2(4): 365-370. doi: 10.15982/j.issn.2095-7777.2015.04.011
    [16] 梁常春, 孙鹏飞, 王耀兵, 危清清, 姜水清.  行星采样柔性机械臂运动规划研究 . 深空探测学报(中英文), 2015, 2(1): 27-33. doi: 10.15982/j.issn.2095-7777.2015.01.004
    [17] 陈德相, 徐文明, 杜智远, 徐瑞.  航天器任务规划中资源约束的可分配处理方法 . 深空探测学报(中英文), 2015, 2(2): 180-185. doi: 10.15982/j.issn.2095-7777.2015.02.013
    [18] 李朝玉, 徐瑞.  一种基于时标状态的启发式航天器任务规划算法 . 深空探测学报(中英文), 2015, 2(1): 20-26. doi: 10.15982/j.issn.2095-7777.2015.01.003
    [19] 董元元, 崔祜涛, 田阳.  基于栅格地图的火星车路径规划方法 . 深空探测学报(中英文), 2014, 1(4): 289-293. doi: 10.15982/j.issn.2095-7777.2014.04.007
    [20] 王琼, 于登云, 贾阳.  Risk Theta*:一种基于地形危险度的任意航向路径规划算法 . 深空探测学报(中英文), 2014, 1(4): 269-274. doi: 10.15982/j.issn.2095-7777.2014.04.004
  • 加载中
计量
  • 文章访问数:  1035
  • HTML全文浏览量:  17
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-11
  • 修回日期:  2018-01-05
  • 刊出日期:  2018-12-01

基于扩展状态深空探测器任务规划方法

doi: 10.15982/j.issn.2095-7777.2018.06.010
    基金项目:  基础科研计划资助项目(JCKY2016602C018)

摘要: 面对深空探测过程中的不确定性,探测器需要利用任务规划技术实现自主控制。针对深空探测器任务规划中复杂系统功能及耦合操作约束,在状态知识框架的基础上,引入了扩展状态的概念。通过分析探测器任务规划中的约束关系,提出了基于扩展状态的任务规划算法。利用扩展状态结构特点削减了搜索空间,优化了搜索过程,提高了规划搜索的速度。数值仿真结果表明,该算法能够缩减近半的规划步数,加速问题求解进程,提高任务规划的效率。

English Abstract

金颢, 徐瑞, 崔平远, 朱圣英. 基于扩展状态深空探测器任务规划方法[J]. 深空探测学报(中英文), 2018, 5(6): 569-574. doi: 10.15982/j.issn.2095-7777.2018.06.010
引用本文: 金颢, 徐瑞, 崔平远, 朱圣英. 基于扩展状态深空探测器任务规划方法[J]. 深空探测学报(中英文), 2018, 5(6): 569-574. doi: 10.15982/j.issn.2095-7777.2018.06.010
JIN Hao, XU Rui, CUI Pingyuan, ZHU Shengying. Mission Planning Approach Based on Extensible States for Deep Space Probes[J]. Journal of Deep Space Exploration, 2018, 5(6): 569-574. doi: 10.15982/j.issn.2095-7777.2018.06.010
Citation: JIN Hao, XU Rui, CUI Pingyuan, ZHU Shengying. Mission Planning Approach Based on Extensible States for Deep Space Probes[J]. Journal of Deep Space Exploration, 2018, 5(6): 569-574. doi: 10.15982/j.issn.2095-7777.2018.06.010
参考文献 (26)

目录

    /

    返回文章
    返回