中文核心期刊

中国科学引文数据库核心来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进多模型的火星大气进入自适应估计方法

邓剑峰 高艾 崔平远

邓剑峰, 高艾, 崔平远. 基于改进多模型的火星大气进入自适应估计方法[J]. 深空探测学报(中英文), 2017, 4(6): 535-543,551. doi: 10.15982/j.issn.2095-7777.2017.06.006
引用本文: 邓剑峰, 高艾, 崔平远. 基于改进多模型的火星大气进入自适应估计方法[J]. 深空探测学报(中英文), 2017, 4(6): 535-543,551. doi: 10.15982/j.issn.2095-7777.2017.06.006
DENG Jianfeng, GAO Ai, CUI Pingyuan. Mars Entry Adaptive Estimation Method Based on Modified Multiple Models[J]. Journal of Deep Space Exploration, 2017, 4(6): 535-543,551. doi: 10.15982/j.issn.2095-7777.2017.06.006
Citation: DENG Jianfeng, GAO Ai, CUI Pingyuan. Mars Entry Adaptive Estimation Method Based on Modified Multiple Models[J]. Journal of Deep Space Exploration, 2017, 4(6): 535-543,551. doi: 10.15982/j.issn.2095-7777.2017.06.006

基于改进多模型的火星大气进入自适应估计方法

doi: 10.15982/j.issn.2095-7777.2017.06.006
基金项目: 国家自然科学基金资助项目(61374216,61304226,61304248)

Mars Entry Adaptive Estimation Method Based on Modified Multiple Models

  • 摘要: 针对火星进入过程中大气密度等不确定参数对导航系统状态估计精度的影响,提出了一种基于改进混合专家框架的多模型自适应估计方法。该方法对进入过程中不同的测量信息进行规范化处理,以克服传统多模型自适应估计方法稳定性差、数值下溢等固有缺陷,进一步提高状态估计精度。将其应用于火星不同进入探测方式下的导航场景进行仿真分析。仿真结果表明:该方法在动力学系统模型参数存在不确定扰动时能获得精确的状态估计,可以满足未来定点着陆探测对导航系统的精度需求。
  • [1] 崔平远, 于正湜, 朱圣英. 火星进入段自主导航技术研究现状与展望 [J]. 宇航学报, 2013, 34(4):447-456.
    CUI P Y, YU Z S, ZHU S Y. Research progress and prospect of autonomous navigation techniques for Mars entry phase[J]. Journal of Astronautics, 2013, 34(4):447-456.
    [2] 于正湜, 崔平远. 行星着陆自主导航与制导控制研究现状与趋势[J]. 深空探测学报, 2016, 3(4):345-355.
    YU Z S, CUI P Y. Research status and developing trend of the autonomous navigation, guidance, and control for planetary landing[J]. Journal of Deep Space Exploration, 2016, 3(4):345-355.
    [3] 崔平远, 胡海静, 朱圣英. 火星精确着陆制导问题分析与展望[J]. 宇航学报, 2014, 35(3):245-253.
    CUI P Y, HU H J, ZHU S Y. Analysis and prospect of guidance aspects for Mars pecision landing[J]. Journal of Astronautics, 2014, 35(3):245-253.
    [4] 龙嘉腾, 高艾, 崔平远. 火星大气进入段侧向预测校正制导律设计[J]. 深空探测学报, 2016, 3(2):145-149, 180.
    LONG J T, GAO A, CUI P Y. Lateral predictive guidance for Mars atmospheric entry[J]. Journal of Deep Space Exploration, 2016, 3(2):145-149, 180.
    [5] BRAUN R D, MANNING R M. Mars exploration entry, descent, and landing challenges[J]. Journal of Spacecraft and Rockets, 2007, 44(2):310-323.
    [6] ELY T, BISHOP R, DUBOIS-MATRA O. Robust entry navigation using hierarchical filter architectures regulated with gating networks[C]//16th International Symposium on Space Flight Dynamics. Pasadena:EAS, 2001.
    [7] MATRA O, BISHOP H. Multi-model navigation with gating networks for Mars entry precision landing[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Rhode Island:AIAA, 2004.
    [8] MARSCHKE J M, CRASSIDIS J L, LAM Q M. Multiple model adaptive estimation for inertial navigation during Mars entry[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Hawaii:AIAA, 2008.
    [9] LÉVESQUE J F, LAFONTAINE J D. Innovative navigation schemes for state and parameter estimation during Mars entry[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1):169-184.
    [10] QIN T, ZHU S Y, CUI P Y. Flying beacon aided entry navigation for mars orbiter-lander integrated mission[C]//AIAA Guidance, Navigation, and Control Conference. California:AIAA, 2016.
    [11] XIAO Q, FU H M, WANG Z H, et al. Multiple model adaptive rank estimation for integrated navigation during Mars entry[J]. The Journal of Navigation, 2016, 70(2):291-308.
    [12] LOU T, ZHAO L Y. Robust Mars atmospheric entry integrated navigation based on parameter sensitivity[J]. Acta Astronautica, 2016(192):60-70.
    [13] HASTRUP R, BELL D, CESARONE R, et al. Mars network for enabling low-cost missions[J]. Acta Astronautica, 2003, 52(2):227-235.
    [14] YU Z S, CUI P Y, ZHU S Y. On the observability of Mars entry navigation using radiometric measurements[J]. Advances in Space Research, 2014, 54(8):1513-1524.
    [15] YU Z S, CUI P Y, ZHU S Y. Observability-based beacon configuration optimization for Mars entry navigation[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(4):643-650.
    [16] YU Z S, ZHU S Y, CUI P Y. Orbit optimization of Mars orbiters for entry navigation:from an observability point of view[J]. Acta Astronautica, 2015(111):136-145.
    [17] CHEN A, VASAVADA A, CIANCIOLO A, et al. Atmospheric risk assessment for the Mars science laboratory entry, descent, and landing system[C]//Aerospace Conference. USA:IEEE, 2010.
    [18] CHEN A, BECK R, BRUGAROLAS P, et al. Entry system design and performance summary for the Mars science laboratory mission[C]//AIAA/AAS Spaceflight Mechanics Meeting. Lihue:AIAA, 2013.
    [19] GAZARIK M J, WRIGHT M J, LITTLE A, et al. Overview of the MEDLI project[C]//Aerospace Conference. USA:IEEE, 2008.
    [20] DUTTA S, BRAUN R D. Statistical entry, descent, and landing performance reconstruction of the Mars science laboratory[J]. Journal of Spacecraft and Rockets, 2014, 51(4):1048-1061.
    [21] MAGILL D. Optimal adaptive estimation of sampled stochastic processes[J]. IEEE Transactions on Automatic Control, 1965, 10(4):434-439.
    [22] CHAER W S, BISHOP R H, GHOSH J. A mixture-of-experts framework for adaptive kalman filtering[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 1997, 27(3):452-464.
    [23] STELTZNER A D, MIGUEL SAN M A, RIVELLINI T P, et al. Mars science laboratory entry, descent, and landing system development challenges[J]. Journal of Spacecraft and Rockets, 2014, 51(4):994-1003.
    [24] SHOTWELL R. Phoenix—the first Mars scout mission[J]. Acta Astronautica, 2005, 57(2):121-134.
    [25] DESAI P N, KNOCKE P C. Mars exploration rovers entry, descent, and landing trajectory analysis[J]. The Journal of the Astronautical Sciences, 2007, 55(3):311-323.
    [26] BRAUN R, SPENCER D, KALLEMEYN P, et al. Mars pathfinder atmospheric entry navigation operations[J]. Journal of spacecraft and rockets, 1999, 36(3):348-356.
    [27] EULER G A E, HOPPER F. Design and reconstruction of the Viking lander descent trajectories[J]. Journal of Guidance, Control, and Dynamics, 1978, 1(5):372-378.
    [28] SIMS M, PULLAN D, TOWNEND M, et al. Beagle 2 mission operations:architecture and approach[C]//Space OPS 2004 Conference. Montreal:AIAA, 2004.
    [29] DENG J F, GAO A, ZONG H, et al. An innovative navigation scheme for Mars entry using dynamic pressure measurement[J]. Advances in Space Research, 2017;60(10):2319-2331.
    [30] JORDAN M I, JACOBS R A. Hierarchies of adaptive experts[J]. Advances in Neural Information Processing Systems, 1991(4):985-992.
    [31] KARLGAARD C D, KUTTY P, SCHOENENBERGER M, et al. Mars science laboratory entry atmospheric data system trajectory and atmosphere reconstruction[J]. Journal of Spacecraft and Rockets, 2014, 51(4):1029-1047.
  • [1] 桂明臻, 宁晓琳, 马辛, 叶文.  一种快速星光角距/时间延迟量测组合导航方法 . 深空探测学报(中英文), 2021, 8(2): 190-197. doi: 10.15982/j.issn.2096-9287.2021.20200080
    [2] 葛丹桐, 朱圣英.  小行星复杂形貌自适应附着轨迹动态规划方法 . 深空探测学报(中英文), 2021, 8(2): 132-139. doi: 10.15982/j.issn.2096-9287.2021.20200072
    [3] 湛康意, 陈海朋, 余薛浩, 王禄, 李昃雯.  月面应急上升自适应制导技术研究 . 深空探测学报(中英文), 2021, 8(2): 163-170. doi: 10.15982/j.issn.2096-9287.2021.20200076
    [4] 宁晓琳, 晁雯.  一种基于太阳自转轴观测角的新型天文导航方法 . 深空探测学报(中英文), 2019, 6(4): 328-334. doi: 10.15982/j.issn.2095-7777.2019.04.003
    [5] 喻子原, 刘劲, 宁晓琳, 马辛, 桂明臻, 康志伟.  面向编队飞行的天文多普勒差分/脉冲星组合导航 . 深空探测学报(中英文), 2018, 5(3): 212-218. doi: 10.15982/j.issn.2095-7777.2018.3.002
    [6] 易韦韦, 偶晓娟, 许静文, 李晶, 李冰.  脉冲星导航试验卫星观测数据处理与分析 . 深空探测学报(中英文), 2018, 5(3): 241-245,261. doi: 10.15982/j.issn.2095-7777.2018.3.006
    [7] 郝万宏, 董光亮, 李海涛, 王宏, 樊敏, 周欢, 徐得珍.  火星大气进入下降着陆段测控通信关键技术研究 . 深空探测学报(中英文), 2018, 5(5): 426-434. doi: 10.15982/j.issn.2095-7777.2018.05.004
    [8] 张恒, 张伟, 陈晓.  深空测角测速组合导航系统时间配准方法研究 . 深空探测学报(中英文), 2017, 4(4): 373-378. doi: 10.15982/j.issn.2095-7777.2017.04.010
    [9] 郭敏文, 李茂登, 黄翔宇, 王大轶.  非一致终端约束下火星大气进入段制导律设计 . 深空探测学报(中英文), 2017, 4(2): 184-189. doi: 10.15982/j.issn.2095-7777.2017.02.013
    [10] 闫晓鹏, 孙海滨, 郭雷.  火星着陆器的大气进入段有限时间抗干扰制导律设计 . 深空探测学报(中英文), 2016, 3(1): 61-67. doi: 10.15982/j.issn.2095-7777.2016.01.010
    [11] 龙嘉腾, 高艾, 崔平远.  火星大气进入段侧向预测校正制导律设计 . 深空探测学报(中英文), 2016, 3(2): 145-149,180. doi: 10.15982/j.issn.2095-7777.2016.02.008
    [12] 宁晓琳, 李卓, 黄盼盼, 杨雨青, 刘刚, 房建成.  火星探测器捕获段自适应卡尔曼滤波方法 . 深空探测学报(中英文), 2016, 3(3): 237-245. doi: 10.15982/j.issn.2095-7777.2016.03.007
    [13] 宁宗军, 李东, 戴煜.  深空组合导航中天文测速观测研究 . 深空探测学报(中英文), 2016, 3(3): 225-227,245. doi: 10.15982/j.issn.2095-7777.2016.03.005
    [14] 赵振华, 杨俊, 李世华, 郭雷.  基于阻力跟踪的火星大气进入段非线性预测制导律设计 . 深空探测学报(中英文), 2015, 2(2): 137-143. doi: 10.15982/j.issn.2095-7777.2015.02.006
    [15] 夏元清, 沈刚辉, 孙浩然, 周鎏宇.  火星探测器进入段预测校正制导方法 . 深空探测学报(中英文), 2015, 2(4): 338-344. doi: 10.15982/j.issn.2095-7777.2015.04.007
    [16] 傅惠民, 娄泰山, 肖强.  火星进入段探测器自校准状态估计 . 深空探测学报(中英文), 2015, 2(3): 224-228. doi: 10.15982/j.issn.2095-7777.2015.03.006
    [17] 陈颖, 周璐, 王立.  一种火星多模式组合探测任务设想 . 深空探测学报(中英文), 2014, 1(2): 156-160.
    [18] 吴超, 赵振华, 杨俊, 李世华, 郭雷.  基于约束预测控制的火星大气进入轨迹跟踪 . 深空探测学报(中英文), 2014, 1(2): 128-133.
    [19] 崔平远, 高艾, 于正湜.  火星着陆自主导航方案研究进展 . 深空探测学报(中英文), 2014, 1(1): 18-27.
    [20] 范双菲, 赵方方, 李夏菁, 唐忠樑, 贺威.  基于SINS/CNS组合导航系统的多模型自适应估计算法 . 深空探测学报(中英文), 2014, 1(4): 275-281. doi: 10.15982/j.issn.2095-7777.2014.04.005
  • 加载中
计量
  • 文章访问数:  1865
  • HTML全文浏览量:  14
  • PDF下载量:  918
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-05-11
  • 刊出日期:  2017-12-01

基于改进多模型的火星大气进入自适应估计方法

doi: 10.15982/j.issn.2095-7777.2017.06.006
    基金项目:  国家自然科学基金资助项目(61374216,61304226,61304248)

摘要: 针对火星进入过程中大气密度等不确定参数对导航系统状态估计精度的影响,提出了一种基于改进混合专家框架的多模型自适应估计方法。该方法对进入过程中不同的测量信息进行规范化处理,以克服传统多模型自适应估计方法稳定性差、数值下溢等固有缺陷,进一步提高状态估计精度。将其应用于火星不同进入探测方式下的导航场景进行仿真分析。仿真结果表明:该方法在动力学系统模型参数存在不确定扰动时能获得精确的状态估计,可以满足未来定点着陆探测对导航系统的精度需求。

English Abstract

邓剑峰, 高艾, 崔平远. 基于改进多模型的火星大气进入自适应估计方法[J]. 深空探测学报(中英文), 2017, 4(6): 535-543,551. doi: 10.15982/j.issn.2095-7777.2017.06.006
引用本文: 邓剑峰, 高艾, 崔平远. 基于改进多模型的火星大气进入自适应估计方法[J]. 深空探测学报(中英文), 2017, 4(6): 535-543,551. doi: 10.15982/j.issn.2095-7777.2017.06.006
DENG Jianfeng, GAO Ai, CUI Pingyuan. Mars Entry Adaptive Estimation Method Based on Modified Multiple Models[J]. Journal of Deep Space Exploration, 2017, 4(6): 535-543,551. doi: 10.15982/j.issn.2095-7777.2017.06.006
Citation: DENG Jianfeng, GAO Ai, CUI Pingyuan. Mars Entry Adaptive Estimation Method Based on Modified Multiple Models[J]. Journal of Deep Space Exploration, 2017, 4(6): 535-543,551. doi: 10.15982/j.issn.2095-7777.2017.06.006
参考文献 (31)

目录

    /

    返回文章
    返回