中文核心期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考

叶斌龙 赵健楠 黄俊

叶斌龙, 赵健楠, 黄俊. 美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考[J]. 深空探测学报(中英文), 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002
引用本文: 叶斌龙, 赵健楠, 黄俊. 美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考[J]. 深空探测学报(中英文), 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002
YE Binlong, ZHAO Jiannan, HUANG Jun. The Status of NASA Mars 2020 Rover Landing Site Selection and Some Thoughts on the Landing Part of China 2020 Mars Mission[J]. Journal of Deep Space Exploration, 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002
Citation: YE Binlong, ZHAO Jiannan, HUANG Jun. The Status of NASA Mars 2020 Rover Landing Site Selection and Some Thoughts on the Landing Part of China 2020 Mars Mission[J]. Journal of Deep Space Exploration, 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002

美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考

doi: 10.15982/j.issn.2095-7777.2017.04.002
基金项目: 国家自然科学基金资助项目(41403052,41773061);博士点优先领域基金资助项目(20130145130001);中国地质大学(武汉)中央高校基本科研业务费专项资金(CUGL160402,CUG2017G02)

The Status of NASA Mars 2020 Rover Landing Site Selection and Some Thoughts on the Landing Part of China 2020 Mars Mission

  • 摘要: 总结了近20年来火星探测的重要发现以及生命、气候和地质3个方面尚未解决的关键科学问题;介绍了美国国家航空航天局(NASA)2020火星探测任务的科学目标、科学载荷和着陆区选择的工程条件限制,并重点分析了经过3次着陆区选择研讨会,上百位行星科学家投票选取的排名前3的预选着陆区的地质情况。在此基础上,提出了对我国2020年火星任务的着陆探测部分的一些思考,并根据不同的任务目标(聚焦生命、气候和地质问题;支持载人火星探测的资源勘察;工程技术验证)提出了3个候选着陆区。
  • [1] Smith D E,Zuber M T,Frey H V,et al. Mars Orbiter Laser Altimeter:experiment summary after the first year of global mapping of Mars[J]. Journal of Geophysical Research-Planets,2001,106(E10):23689-23722.
    [2] Malin M C,Edgett K S. Mars Global Surveyor Mars Orbiter Camera:interplanetary cruise through primary mission[J]. Journal of Geophysical Research-Planets,2001,106(E10):23429-23570.
    [3] Christensen P R,Bandfield J L,Smith M D,et al. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data[J]. Journal of Geophysical Research,2000,105(E4):9609-9621.
    [4] Ehlmann B L,Edwards C S. Mineralogy of the Martian surface[J]. Annual Review of Earth and Planetary Sciences,2014,42:291-315.
    [5] Bibring J P,Langevin Y,Mustard J F,et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data[J]. Science,2006,312(5772):400-404.
    [6] Boynton W V,Taylor G J,Evans L G,et al. Concentration of H,Si,Cl,K,Fe,and Th in the low- and mid-latitude regions of Mars[J]. Journal of Geophysical Research:Planets,2007,112(E12):n/a-n/a.
    [7] Mitrofanov I,Anfimov D,Kozyrev A,et al. Maps of subsurface hydrogen from the high energy neutron detector,Mars Odyssey[J]. Science,2002,297(5578):78-81.
    [8] Byrne S,Dundas C M,Kennedy M R,et al. Distribution of mid-latitude ground ice on Mars from new impact craters[J]. Science,2009,325(5948):1674-1676.
    [9] Bandfield J L. High-resolution subsurface water-ice distributions on Mars[J]. Nature,2007,447(7140):64-67.
    [10] Acuna M H,Connerney J,Wasilewski P A,et al. Magnetic field and plasma observations at Mars:Initial results of the Mars Global Surveyor mission[J]. Science,1998,279(5357):1676-1680.
    [11] Zuber M T,Solomon S C,Phillips R J,et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity[J]. Science,2000,287(5459):1788-1793.
    [12] Jakosky B M,Lin R P,Grebowsky J M,et al. The Mars atmosphere and volatile evolution(MA-VEN)mission[J]. Space Science Reviews,2015,195(1-4):3-48.
    [13] Smith M D. Interannual variability in TES atmospheric observations of Mars during 1999-2003[J]. Icarus,2004,167(1):148-165.
    [14] Jakosky B M,Grebowsky J M,Luhmann J G,et al. Initial results from the MAVEN mission to Mars[J]. Geophysical Research Letters,2015,42(21):8791-8802.
    [15] Bougher S,Jakosky B,Halekas J,et al. Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability[J]. Science,2015,350(6261):d459.
    [16] Christensen P R. Water at the poles and in permafrost regions of Mars[J]. Elements,2006,2(3):151-155.
    [17] Martin-Torres F J,Zorzano M,Valentin-Serrano P,et al. Transient liquid water and water activity at Gale crater on Mars[J]. Nature Geoscience,2015,8(5):357-361.
    [18] Michalski J R,Cuadros J,Niles P B,et al. Groundwater activity on Mars and implications for a deep biosphere[J]. Nature Geoscience,2013,6(2):133-138.
    [19] Council N R. An Astrobiology Strategy for the Exploration of Mars[Z]. Washington,D.C.:[s. n.],2007.
    [20] Mcewen A S,Ojha L,Dundas C M,et al. Seasonal Flows on Warm Martian Slopes[J]. Science,2011,333(6043):740.
    [21] Mcewen A S,Dundas C M,Mattson S S,et al. Recurring slope lineae in equatorial regions of Mars[J]. Nature geoscience,2014,7(1):53-58.
    [22] Ojha L,Wilhelm M B,Murchie S L,et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars[J]. Nature Geoscience. 2015,8(11):829-832.
    [23] Mumma M J,Villanueva G L,Novak R E,et al. Strong Release of Methane on Mars in Northern Summer 2003[J]. Science,2009,323(5917):1041-1045.
    [24] Laskar J,Correia A,Gastineau M,et al. Long term evolution and chaotic diffusion of the insola-tion quantities of Mars[J]. Icarus,2004,170(2):343-364.
    [25] Forget F,Haberle R M,Montmessin F,et al. Formation of glaciers on Mars by atmospheric pre-cipitation at high obliquity[J]. science,2006,311(5759):368-371.
    [26] Schorghofer N. Dynamics of ice ages on Mars[J]. Nature,2007,449(7159):192-194.
    [27] Grotzinger J P,Arvidson R E,Bell J F,et al. Stratigraphy and sedimentology of a dry to wet eolian depositional system,Burns formation,Meridiani Planum,Mars[J]. Earth and Planetary Science Letters,2005,240(1):11-72.
    [28] Andrews-Hanna J C,Zuber M T,Arvidson R E,et al. Early Mars hydrology:Meridiani playa de-posits and the sedimentary record of Arabia Terra[J]. Journal of Geophysical Research-Planets,2010,115.
    [29] Walter M R,Desmarais D J. Preservation of Biological Information in Thermal-Spring Deposits-Developing a Strategy for the Search for Fossil Life on Mars[J]. Icarus,1993,101(1):129-143.
    [30] Segura T L,Toon O B,Colaprete A. Modeling the environmental effects of moderate-sized im-pacts on Mars[J]. Journal of Geophysical Research-Planets,2008,113(E11).
    [31] Steele A. Astrobiology Sample Acquisition and Return. White paper submitted to the Planetary Science Decadal Survey[Z]. Washington,D.C.:[s. n.],2009.
    [32] Carr M H,Head J W. Oceans on Mars:an assessment of the observational evidence and possible fate[J]. Journal of Geophysical Research Atmospheres,2003,108(5042):127-143.
    [33] Arvidson R E,Ruff S W,Morris R V,et al. Spirit Mars rover mission to the Columbia hills,gusev crater:mission overview and selected results from the Cumberland Ridge to Home Plate[J]. Journal of Geophysical Research-Planets,2008,113(E12).
    [34] Xiao L,Wang J,Dang Y,et al. A new terrestrial analogue site for Mars research:The Qaidam Basin,Tibetan Plateau(NW China)[J]. Earth-Science Reviews,2017,164:84-101.
    [35] Cantor B A,Kanak K M,Edgett K S. Mars Orbiter Camera observations of Martian dust devils and their tracks(September 1997 to January 2006)and evaluation of theoretical vortex models[J]. Journal of Geophysical Research:Planets,2006,111(E12):n/a-n/a.
    [36] Basu S,Wilson J,Richardson M,et al. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM[J]. Journal of Geophysical Research:Planets,2006,111(E9):75-83.
    [37] Newman C E,Lewis S R,Read P L,et al. Modeling the Martian dust cycle,1. Representations of dust transport processes[J]. Journal of Geophysical Research:Planets,2002,107(E12):6-1-6-18.
    [38] Hourdin F,Le Van P,Forget F,et al. Meteorological variability and the annual surface pressure cycle on Mars[J]. Journal of the atmospheric sciences,1993,50(21):3625-3640.
    [39] Bibring J P,Langevin Y,Poulet F,et al. Perennial water ice identified in the south polar cap of Mars[J]. Nature,2004,428(6983):627-630.
    [40] Clifford S M,Crisp D,Fisher D A,et al. The state and future of Mars polar science and explora-tion[J]. Icarus,2000,144(2):210-242.
    [41] Levrard B,Forget F,Montmessin F,et al. Recent formation and evolution of northern Martian polar layered deposits as inferred from a Global Climate Model[J]. Journal of Geophysical Research:Planets,2007,112(E6).
    [42] Laskar J,Levrard B,Mustard J F. Orbital forcing of the Martian polar layered deposits[J]. Nature,2002,419(6905):375.
    [43] Mccleese D J,Heavens N G,Schofield J T,et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder:Seasonal variations in zonal mean tem-perature,dust,and water ice aerosols[J]. Journal of Geophysical Research:Planets,2010,115(E12):n/a-n/a.
    [44] Forget F,Montmessin F,Bertaux J,et al. Density and temperatures of the upper Martian atmos-phere measured by stellar occultations with Mars Express SPICAM[J]. Journal of Geophysical Re-search:Planets,2009,114(E1).
    [45] Schneider N M,Deighan J I,Jain S K,et al. Discovery of diffuse aurora on Mars[J]. Science,2015,350(6261):d313.
    [46] Andersson L,Weber T D,Malaspina D,et al. Dust observations at orbital altitudes surrounding Mars[J]. Science,2015,350(6261):d398.
    [47] Jakosky B M,Slipski M,Benna M,et al. Mars' atmospheric history derived from up-per-atmosphere measurements of 38Ar/36Ar[J]. Science,2017,355(6332):1408-1410.
    [48] Lefevre F,Forget F. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics[J]. Nature,2009,460(7256):720-723.
    [49] Silvestro S,Fenton L K,Vaz D A,et al. Ripple migration and dune activity on Mars:Evidence for dynamic wind processes[J]. Geophysical Research Letters,2010,37(20).
    [50] Hansen C J,Diniega S,Bridges N,et al. Agents of change on Mars' northern dunes:CO 2 ice and wind%9] Ehlmann B L,Mustard J F,Swayze G A,et al. Identification of hydrated silicate minerals on Mars using MRO‐CRISM:Geologic context near Nili Fossae and implications for aqueous altera-tion[J]. Journal of Geophysical Research:Planets,2009,114(E2):538-549.
    [51] Ehlmann B L,Mustard J F,Murchie S L,et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011,479(7371):53-60.
    [52] Quantin C, Allemand P, Mangold N, et al. Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars[J]. Journal of Geophysical Research Planets, 2005, 110(E12):4919-4934.
    [53] Dromart G,Quantin C,Broucke O. Stratigraphic architectures spotted in southern Melas Chasma,Valles Marineris,Mars[J]. Geology,2007,35(4):363-366.
  • [1] 王靓玥, 郭延宁, 马广富.  火星探测器制动捕获策略研究 . 深空探测学报(中英文), 2020, 7(2): 178-183. doi: 10.15982/j.issn.2095-7777.2020.20171123001
    [2] 张宝明, 朱岩, 王连国, 杨建峰, 周斌, 徐卫明, 孙树全, 蔡治国, 徐欣锋, 杜庆国.  中国首次火星探测任务火星车有效载荷定标试验 . 深空探测学报(中英文), 2020, 7(5): 481-488. doi: 10.15982/j.issn.2096-9287.2020.20200043
    [3] 王越, 王彪, 王汛, 潘辰安, 姚佩雯, 李晨帆, 李勃.  火星探测任务着陆区选址和地质分析 . 深空探测学报(中英文), 2020, 7(4): 371-383. doi: 10.15982/j.issn.2095-7777.2020.20190708001
    [4] 滕锐, 韩宏伟, 乔栋.  火星探测最优离轨制导方法研究 . 深空探测学报(中英文), 2020, 7(2): 184-190. doi: 10.15982/j.issn.2095-7777.2020.20190315001
    [5] 薛彬, 刘生润, 杨建峰.  用于火星表面生命信息探测的激光拉曼技术进展 . 深空探测学报(中英文), 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012
    [6] 徐侃彦, 马玲玲, 印红, 张轶男.  火星无人探测与行星保护 . 深空探测学报(中英文), 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
    [7] 申智春, 林小艳, 程坤, 王海鹏.  火星探测器器箭分离冲击响应影响分析与评价 . 深空探测学报(中英文), 2018, 5(5): 483-487. doi: 10.15982/j.issn.2095-7777.2018.05.012
    [8] 杨甲森, 刘明洁, 陈托, 智佳, 张华伟, 王炜, 陈志敏.  中国首次火星探测任务有效载荷地面综合测试系统设计 . 深空探测学报(中英文), 2018, 5(5): 442-449. doi: 10.15982/j.issn.2095-7777.2018.05.006
    [9] 李春来, 刘建军, 耿言, 曹晋滨, 张铁龙, 方广有, 杨建峰, 舒嵘, 邹永廖, 林杨挺, 欧阳自远.  中国首次火星探测任务科学目标与有效载荷配置 . 深空探测学报(中英文), 2018, 5(5): 406-413. doi: 10.15982/j.issn.2095-7777.2018.05.002
    [10] 刘建军, 苏彦, 左维, 任鑫, 孔德庆, 温卫斌, 张洪波, 李春来.  中国首次火星探测任务地面应用系统 . 深空探测学报(中英文), 2018, 5(5): 414-425. doi: 10.15982/j.issn.2095-7777.2018.05.003
    [11] 耿言, 周继时, 李莎, 付中梁, 孟林智, 刘建军, 王海鹏.  我国首次火星探测任务 . 深空探测学报(中英文), 2018, 5(5): 399-405. doi: 10.15982/j.issn.2095-7777.2018.05.001
    [12] 刘庆会.  火星探测VLBI测定轨技术 . 深空探测学报(中英文), 2018, 5(5): 435-441. doi: 10.15982/j.issn.2095-7777.2018.05.005
    [13] 朱岩, 白云飞, 王连国, 沈卫华, 张宝明, 王蔚, 周盛雨, 杜庆国, 陈春红.  中国首次火星探测工程有效载荷总体设计 . 深空探测学报(中英文), 2017, 4(6): 510-514,534. doi: 10.15982/j.issn.2095-7777.2017.06.002
    [14] 李贺, 全齐全, 王鑫剑, 姜生元, 邓宗全.  一种基于压电驱动的火星岩石钻探器的研制 . 深空探测学报(中英文), 2016, 3(2): 156-161. doi: 10.15982/j.issn.2095-7777.2016.02.010
    [15] 陈晓, 尤伟, 黄庆龙.  火星探测巡航段天文自主导航方法研究 . 深空探测学报(中英文), 2016, 3(3): 214-218. doi: 10.15982/j.issn.2095-7777.2016.03.003
    [16] 于登云, 孙泽洲, 孟林智, 石东.  火星探测发展历程与未来展望 . 深空探测学报(中英文), 2016, 3(2): 108-113. doi: 10.15982/j.issn.2095-7777.2016.02.002
    [17] 傅惠民, 娄泰山, 肖强.  火星进入段探测器自校准状态估计 . 深空探测学报(中英文), 2015, 2(3): 224-228. doi: 10.15982/j.issn.2095-7777.2015.03.006
    [18] 高朝辉, 童科伟, 时剑波, 申麟.  载人火星和小行星探测任务初步分析 . 深空探测学报(中英文), 2015, 2(1): 10-19. doi: 10.15982/j.issn.2095-7777.2015.01.002
    [19] 侯建文, 周杰.  “火星科学实验室”巡航段导航、制导与控制 . 深空探测学报(中英文), 2014, 1(2): 110-116.
    [20] 陈颖, 周璐, 王立.  一种火星多模式组合探测任务设想 . 深空探测学报(中英文), 2014, 1(2): 156-160.
  • 加载中
计量
  • 文章访问数:  3799
  • HTML全文浏览量:  90
  • PDF下载量:  1970
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-10
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-08-01

美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考

doi: 10.15982/j.issn.2095-7777.2017.04.002
    基金项目:  国家自然科学基金资助项目(41403052,41773061);博士点优先领域基金资助项目(20130145130001);中国地质大学(武汉)中央高校基本科研业务费专项资金(CUGL160402,CUG2017G02)

摘要: 总结了近20年来火星探测的重要发现以及生命、气候和地质3个方面尚未解决的关键科学问题;介绍了美国国家航空航天局(NASA)2020火星探测任务的科学目标、科学载荷和着陆区选择的工程条件限制,并重点分析了经过3次着陆区选择研讨会,上百位行星科学家投票选取的排名前3的预选着陆区的地质情况。在此基础上,提出了对我国2020年火星任务的着陆探测部分的一些思考,并根据不同的任务目标(聚焦生命、气候和地质问题;支持载人火星探测的资源勘察;工程技术验证)提出了3个候选着陆区。

English Abstract

叶斌龙, 赵健楠, 黄俊. 美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考[J]. 深空探测学报(中英文), 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002
引用本文: 叶斌龙, 赵健楠, 黄俊. 美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考[J]. 深空探测学报(中英文), 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002
YE Binlong, ZHAO Jiannan, HUANG Jun. The Status of NASA Mars 2020 Rover Landing Site Selection and Some Thoughts on the Landing Part of China 2020 Mars Mission[J]. Journal of Deep Space Exploration, 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002
Citation: YE Binlong, ZHAO Jiannan, HUANG Jun. The Status of NASA Mars 2020 Rover Landing Site Selection and Some Thoughts on the Landing Part of China 2020 Mars Mission[J]. Journal of Deep Space Exploration, 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002
参考文献 (53)

目录

    /

    返回文章
    返回