中文核心期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小天体表面移动技术研究进展

于正湜 朱圣英 崔平远 刘延杰

于正湜, 朱圣英, 崔平远, 刘延杰. 小天体表面移动技术研究进展[J]. 深空探测学报(中英文), 2017, 4(4): 301-309. doi: 10.15982/j.issn.2095-7777.2017.04.001
引用本文: 于正湜, 朱圣英, 崔平远, 刘延杰. 小天体表面移动技术研究进展[J]. 深空探测学报(中英文), 2017, 4(4): 301-309. doi: 10.15982/j.issn.2095-7777.2017.04.001
YU Zhengshi, ZHU Shengying, CUI Pingyuan, LIU Yanjie. Research Progress of Small Body Surface Motion Technologies[J]. Journal of Deep Space Exploration, 2017, 4(4): 301-309. doi: 10.15982/j.issn.2095-7777.2017.04.001
Citation: YU Zhengshi, ZHU Shengying, CUI Pingyuan, LIU Yanjie. Research Progress of Small Body Surface Motion Technologies[J]. Journal of Deep Space Exploration, 2017, 4(4): 301-309. doi: 10.15982/j.issn.2095-7777.2017.04.001

小天体表面移动技术研究进展

doi: 10.15982/j.issn.2095-7777.2017.04.001

Research Progress of Small Body Surface Motion Technologies

  • 摘要: 基于已实施的小天体探测任务和未来小天体表面移动探测技术的发展趋势,阐述了小天体表面移动技术研究现状。根据小天体的特殊动力学环境和任务需求,总结了小天体表面移动技术的主要问题;归纳分析了包括小天体引力场建模与表面运动特性分析、小天体表面弹跳技术以及弱引力环境下的导航与制导技术在内的小天体表面移动关键技术,并介绍了这些关键技术的研究进展;对上述关键技术的未来研究热点和发展趋势进行了展望。
  • [1] Wu W,Liu W,Qiao D,et al. Investigation on the development of deep space exploration[J]. Science China Technological Sciences,2012,55(4):1086-1091.
    [2] 崔平远,袁旭,朱圣英,等. 小天体自主附着技术研究进展[J]. 宇航学报,2016,37(7):759-767.
    Cui P Y,Yuan X,Zhu S Y,et al.Research progress of small body autonomous landing techniques[J].Journal of Astronautics,2016,37(7):759-767.
    [3] 崔平远,乔栋,朱圣英,等. 行星着陆探测中的动力学与控制研究进展[J]. 航天器环境工程,2014,31(01):1-8.
    Cui P Y,Qiao D,Zhu S Y,et al.Research porgress of dynamics and control for planetary landing[J].Spacecraft Environment Engineering,2014,31(01):1-8.
    [4] Herrmann F,Kuss S,Schaefer B.Mobility challenges and possible solutions for low-gravity planetary body exploration[C]//11th Symp. on Adv. Space Tech. in Robot. Netherlands:[s. n.],2011.
    [5] 崔平远,乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力学进展,2013(05):526-539.
    Cui P Y,Qiao D.State-of-the-art and prospects for orbital dynamics and control near small celestial bodies[J]. Advances In Mechanics,2013(05):526-539.
    [6] Boyce W. Comment on a formula for the gravitational harmonic coefficients of a triaxial ellipsoid[J]. Celestial Mechanics and Dynamical Astronomy,1997,67(2):107-110.
    [7] Cui P,Ge D,Gao A. Optimal landing site selection based on safety index during planetary descent[J]. Acta Astronautica,2017,132:326-336.
    [8] Werner R A,Scheeres D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of Asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomy,1996,65(3):313-344.
    [9] Werner R A. The gravitational potential of a homogeneous polyhedron[J]. Celestial Mechanics and Dynamical Astronomy,1994,59(3):253-278.
    [10] Miller J K,Konopliv A S,Antreasian P G. Determination of shape,gravity,and rotational state of Asteroid 433 Eros[J]. Icarus,2002,155(1):3-17.
    [11] Park R S,Werner R A,Bhaskaran S. Estimating small-body gravity field from shape model and navigation data[J]. Journal of Guidance,Control,and Dynamics,2010,33(1):212-221.
    [12] Zeng X,Jiang F,Li J,et al. Study on the connection between the rotating mass dipole and natural elongated bodies[J]. Astrophysics and Space Science,2015,356(1):29-42.
    [13] Boyce W. Comment on a formula for the gravitational harmonic coefficients of a triaxial ellipsoid[J]. Celestial Mechanics and Dynamical Astronomy,1997,67(2):107-110.
    [14] Scheeres D J,Williams B G,Miller J K. Evaluation of the dynamic environment of an asteroid:applications to 433 Eros[J]. Journal of Guidance,Control,and Dynamics,2000, 23(3):466-475.
    [15] Dechambre D,Scheeres D J. Transformation of spherical harmonic coefficients to ellipsoidal harmonic coefficients[J]. Celestial Mechanics and Dynamical Astronomy,2002,387(3):1114-1122.
    [16] Takahashi Y,Scheeres D J,Werner R A. Surface gravity fields for asteroids and comets[J]. Journal of Guidance,Control,and Dynamics,2013,36(2):362-374.
    [17] Takahashi Y,Scheeres D J. Small body surface gravity fields via spherical harmonic expansions[J]. Celestial Mechanics and Dynamical Astronomy, 2014,119(2):169-206.
    [18] Guibout V,Scheeres D J. Stability of surface motion on a rotating ellipsoid[J]. Celestial Mechanics and Dynamical Astronomy,2003,87(3):263-290.
    [19] Bellerose J,Scheeres D J. Dynamics and control for surface exploration of small bodies[C]//AIAA/AAS 2008 Astrodynamics Specialist Conference. Honolulu,Hawaii:AIAA,2008.
    [20] Liu X,Baoyin H,Ma X. Dynamics of surface motion on a rotating massive homogeneous body[J]. Science China Physics,Mechanics and Astronomy,2013(4):818-829.
    [21] Yu Y,Baoyin H. Modeling of migrating grains on asteroid's surface[J]. Astrophysics and Space Science,2015,1355(1):43-56.
    [22] Yu Y,Baoyin H. Routing the asteroid surface vehicle with detailed mechanics[J]. Acta Mechanica Sinica,2014,30(3):301-309.
    [23] Yu Y,Richardson D C,Michel P,et al. Numerical predictions of surface effects during the 2029 close approach of Asteroid 99942 Apophis [J]. Icarus,2014,242:82-96.
    [24] Jiang Y,Zhang Y,Baoyin H. Surface motion relative to the irregular celestial bodies[J]. Planetary and Space Science,2016,(127):33-43.
    [25] Biele J,Ulamec S,Richter L,et al. The putative mechanical strength of comet surface material applied to landing on a comet[J]. Acta Astronaut,2009,65:1168-1178.
    [26] Witte L,Schroeder S,Kempe H,et al. Experimental investigations of the comet lander philae touchdown dynamics[J]. Journal of Spacecraft and Rockets,2014,51(6):1885-1894.
    [27] Kemurdzhian A L,Brodskii P N,Gromov V V,et al. A moving vehicle for studying the surface of phobos(PROP)[C]//Instrumentation and Methods for Space Exploration Moscow. Izdatel'stvo Nauka:[s. n.],1989:136-141.
    [28] Britt R Z,Zakharov A V. Brief history of the phobos mission[J]. Nature,1989,341(6243):581-585.
    [29] Yoshimitsu T,Kubota T,Nakatani I,et al. Micro-hopping robot for asteroid exploration[J]. Acta Astronautica,2003,52:441-446.
    [30] Kubota T,Yoshimitsu T. Intelligent unmanned explorer for deep space exploration[C]//International Conference on Intelligent Unmanned Systems.Bali,Indonesia:ICIUS,2007.
    [31] Yoshikawa M,Minamino H,Tsuda Y,et al. Hayabusa2-new challenge of next asteroid sample return mission[C]//Asteroids,Comets,Meteors 2012.Niigata,Japan:[s. n.],2012.
    [32] Reill J,Sedlmayr H J,Kuß S,et al. Development of a mobility drive unit for low gravity planetary body exploration[C]//12th Symposium on Advanced Space Technologies in Robotics and Automation. Noordwijk,Netherlands:[s. n.],2013.
    [33] Dietze C,Herrmann S,Kuß F,et al. Landing and mobility concept for the small asteroid lander MASCOT on Asteroid 1999 JU3[C]//61st International Astronautical Congress.Prague,CZ:[s. n.],2010.
    [34] Reill J,Sedlmayr H J,Neugebauer P,et al. MASCOT-asteroid lander with innovative mobility mechanism[C]//13th Symposium on Advanced Space Technologies in Robotics and Automation. Noordwijk,Netherlands:[s. n.],2015.
    [35] Ulamec S,Kucherenko V,Biele J,et al. Hopper concepts for small body landers[J]. Advances in Space Research,2011,47(3):428-439.
    [36] Pavone M,Castillo-Rogez J C,Nesnas I A D,et al. Spacecraft/rover hybrids for the exploration of small solar system bodies[C]//IEEE Aerospace Conference.[S. l.]:IEEE,2013.
    [37] Fiorini P,Burdick J. The development of hopping capabilities for small robots[J]. Autonomous Robots,2003,14(2):239-254.
    [38] Hand E. Philae probe makes bumpy touchdown on a comet[J]. Science,2014,346(6212):900-901.
    [39] Witte L,Roll R,Biele J,et al. Rosetta lander philae—landing performance and touchdown safety assessment[J]. Acta Astronautica,2016,125:149-160.
    [40] Ulamec S,Biele J. Surface elements and landing strategies for small bodies missions-philae and beyond[J]. Advances in Space Research,2009,44:847-858.
    [41] Biele J,Ulamec S,Maibaum M,et al. The landing(s)of philae and inferences about comet surface mechanical properties[J]. Science,2015,349(6247):aaa9816.
    [42] So E W Y,Yoshimitsu T,Kubota T. Relative localization of a hopping rover on an asteroid surface using optical flow[C]//SICE Annual Conference.Tokyo,Japan:2008.
    [43] So E W Y,Yoshimitsu T,Kubota T. Visual odometry for a hopping rover on an asteroid surface using multiple monocular cameras[J]. Advanced Robotics,2011,25(6-7):893-921.
    [44] 刘延杰,朱圣英,崔平远. 小天体安全着陆与表面探测控制方法研究[J]. 深空探测学报,2016,3(4):370-376.
    Liu Y J,Zhu S Y,Cui P Y. A pulse control strategy of landers for hopping exploration on small bodies[J]. Journal of Deep Space Exploration,2016,3(4):370-376.
    [45] Shen H,Zhang T,Li Z,et al. Multiple-hopping trajectories near a rotating asteroid[J]. Astrophysics and Space Science,2017,362:45.
    [46] Liu Y,Zhu S,Cui P,et al. Hopping trajectory optimization for surface exploration on small bodies[J]. Advances in Space Research,2017,60(1):90-102.
    [47] Cui P,Liu Y,Yu Z,et al. Intelligent landing strategy for the small bodies:from passive bounce to active trajectory control[J]. Acta Astronautica,2017(137):232-242.
    [48] Broschart S B,Scheeres D J. Contrlo of hovering spacecraft near small bodies:application to Asteroid 25143 Itokawa[J]. Journal of Guidance,Control,and Dynamics,2005,28(2):343-354.
    [49] Kubota T,Otsuki M,Hashimoto T,et al. Touchdown dynamics for sampling in Hayabusa Mission[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Keystone,Colorado:AIAA,2006.
    [50] Sawai S,Kawaguchi J,Scheeres D J,et al. Development of a target marker for landing on asteroids[J]. Journal of Spacecraft and Rockets,2001,38(4):601-608.
    [51] Berry K,Sutter B,May A,et al. OSIRIS-REx Touch-And-Go(TAG)mission design and analysis[C]//36th Annual AAS Guidance and Control Conference.Breckenridge,Colorado:AAS,2013.
    [52] Bonitz R.The brush wheel sampler-a sampling device for small-body touch-and-go missions[C]//Aerospace Conference.[S. l.]:IEEE,2012.
    [53] Tardivel S,Scheeres D J,Michel P,et al. Contact motion on surface of asteroid[J]. Journal of Spacecraft and Rockets,2014,51(6):1857-1871.
    [54] Mège D,Gurgurewicz J,Grygorczuk J,et al. The Highland Terrain Hopper(HOPTER):concept and use cases of a new locomotion system for the exploration of low gravity solar system bodies[J]. Acta Astronautica,2016,121:200-220.
    [55] Yoshida K,Maruki T,Yano H. A novel strategy for asteroid exploration with a surface robot surgery[C]//34th COSPAR Scientific Assembly,The Second World Space Congress. Houston:[s. n],2002.
  • [1] 李贺, 王禹, 杜小振, 曾庆良.  一种可跳跃的月面移动机器人系统设计 . 深空探测学报(中英文), 2020, 7(3): 304-310. doi: 10.15982/j.issn.2095-7777.2020.20191011011
    [2] 黄仕杰, 张海燕, 胡浩.  FAST与周边移动通信基站电磁干扰分析 . 深空探测学报(中英文), 2020, 7(2): 144-151. doi: 10.15982/j.issn.2095-7777.2020.20190618004
    [3] 朱立颖, 叶志玲, 李玉庆, 付中梁, 徐勇.  小天体探测自主绕飞智能规划建模 . 深空探测学报(中英文), 2019, 6(5): 463-469. doi: 10.15982/j.issn.2095-7777.2019.05.007
    [4] 王鹏, 武小宇, 张立华.  低成本多小天体并行交会技术 . 深空探测学报(中英文), 2019, 6(1): 73-81. doi: 10.15982/j.issn.2095-7777.2019.01.011
    [5] 冀红霞, 宗红, 黄翔宇.  基于改进预测滤波的小天体精确着陆自主导航方法研究 . 深空探测学报(中英文), 2019, 6(3): 284-292. doi: 10.15982/j.issn.2095-7777.2019.03.013
    [6] 王科, 郑适, 解虎, 邓健, 朱培民, 法文哲, 谭小敏.  雷达技术在小天体任务中的应用研究 . 深空探测学报(中英文), 2019, 6(5): 496-502. doi: 10.15982/j.issn.2095-7777.2019.05.011
    [7] 刘德赟, 赖小明, 王露斯, 刘晓庆, 赵曾, 张加波, 全齐全.  小天体表面采样技术综述 . 深空探测学报(中英文), 2018, 5(3): 246-261. doi: 10.15982/j.issn.2095-7777.2018.3.007
    [8] 王馨悦, 孙越强, 李永平, 唐萍.  质谱计在行星系统与小天体探测中的应用 . 深空探测学报(中英文), 2017, 4(6): 522-528. doi: 10.15982/j.issn.2095-7777.2017.06.004
    [9] 肖尧, 阮晓钢, 魏若岩.  基于433 Eros的多面体引力模型精度与运行时间研究 . 深空探测学报(中英文), 2016, 3(1): 41-46. doi: 10.15982/j.issn.2095-7777.2016.01.006
    [10] 袁旭, 朱圣英.  基于伪谱法的小天体最优下降轨迹优化方法 . 深空探测学报(中英文), 2016, 3(1): 51-55. doi: 10.15982/j.issn.2095-7777.2016.01.008
    [11] 于正湜, 崔平远.  行星着陆自主导航与制导控制研究现状与趋势 . 深空探测学报(中英文), 2016, 3(4): 345-355. doi: 10.15982/j.issn.2095-7777.2016.04.006
    [12] 刘延杰, 朱圣英, 崔平远.  小天体安全着陆与表面探测控制方法研究 . 深空探测学报(中英文), 2016, 3(4): 370-376. doi: 10.15982/j.issn.2095-7777.2016.04.009
    [13] 胡海静, 朱圣英, 崔平远.  基于Lyapunov函数的小天体软着陆障碍规避控制方法 . 深空探测学报(中英文), 2015, 2(2): 149-154. doi: 10.15982/j.issn.2095-7777.2015.02.008
    [14] 袁旭, 朱圣英, 崔平远.  小天体自主附着多滑模面鲁棒制导方法研究 . 深空探测学报(中英文), 2015, 2(4): 345-351. doi: 10.15982/j.issn.2095-7777.2015.04.008
    [15] 郑艺裕, 崔祜涛, 王晓芳.  附着小天体的动态面鲁棒制导与控制方法 . 深空探测学报(中英文), 2015, 2(2): 155-161. doi: 10.15982/j.issn.2095-7777.2015.02.009
    [16] 江秀强, 陶婷, 杨威, 李爽.  附着小天体的最优制导控制方法 . 深空探测学报(中英文), 2015, 2(1): 53-60. doi: 10.15982/j.issn.2095-7777.2015.01.008
    [17] 魏若岩, 阮晓钢, 庞涛, OuattaraSIE, 武旋, 肖尧.  小天体软着陆中的地面特征区域提取与跟踪算法 . 深空探测学报(中英文), 2014, 1(4): 308-314. doi: 10.15982/j.issn.2095-7777.2014.04.011
    [18] 蓝朝桢, 耿迅, 徐青, 崔平远.  基于序列影像的小天体三维形状重建方法研究 . 深空探测学报(中英文), 2014, 1(2): 140-145.
    [19] 袁旭, 朱圣英, 乔栋, 崔平远.  小天体着陆动力学参数不确定性影响分析 . 深空探测学报(中英文), 2014, 1(2): 134-139.
    [20] 于洋, 宝音贺西.  小天体附近的轨道动力学研究综述 . 深空探测学报(中英文), 2014, 1(2): 93-104.
  • 加载中
计量
  • 文章访问数:  2067
  • HTML全文浏览量:  19
  • PDF下载量:  1125
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-14
  • 修回日期:  2017-08-10
  • 刊出日期:  2017-08-01

小天体表面移动技术研究进展

doi: 10.15982/j.issn.2095-7777.2017.04.001

摘要: 基于已实施的小天体探测任务和未来小天体表面移动探测技术的发展趋势,阐述了小天体表面移动技术研究现状。根据小天体的特殊动力学环境和任务需求,总结了小天体表面移动技术的主要问题;归纳分析了包括小天体引力场建模与表面运动特性分析、小天体表面弹跳技术以及弱引力环境下的导航与制导技术在内的小天体表面移动关键技术,并介绍了这些关键技术的研究进展;对上述关键技术的未来研究热点和发展趋势进行了展望。

English Abstract

于正湜, 朱圣英, 崔平远, 刘延杰. 小天体表面移动技术研究进展[J]. 深空探测学报(中英文), 2017, 4(4): 301-309. doi: 10.15982/j.issn.2095-7777.2017.04.001
引用本文: 于正湜, 朱圣英, 崔平远, 刘延杰. 小天体表面移动技术研究进展[J]. 深空探测学报(中英文), 2017, 4(4): 301-309. doi: 10.15982/j.issn.2095-7777.2017.04.001
YU Zhengshi, ZHU Shengying, CUI Pingyuan, LIU Yanjie. Research Progress of Small Body Surface Motion Technologies[J]. Journal of Deep Space Exploration, 2017, 4(4): 301-309. doi: 10.15982/j.issn.2095-7777.2017.04.001
Citation: YU Zhengshi, ZHU Shengying, CUI Pingyuan, LIU Yanjie. Research Progress of Small Body Surface Motion Technologies[J]. Journal of Deep Space Exploration, 2017, 4(4): 301-309. doi: 10.15982/j.issn.2095-7777.2017.04.001
参考文献 (55)

目录

    /

    返回文章
    返回