中文核心期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温推进剂长期在轨蒸发量主动控制技术发展分析

刘欣 张晓屿

刘欣, 张晓屿. 低温推进剂长期在轨蒸发量主动控制技术发展分析[J]. 深空探测学报(中英文), 2017, 4(3): 203-211. doi: 10.15982/j.issn.2095-7777.2017.03.001
引用本文: 刘欣, 张晓屿. 低温推进剂长期在轨蒸发量主动控制技术发展分析[J]. 深空探测学报(中英文), 2017, 4(3): 203-211. doi: 10.15982/j.issn.2095-7777.2017.03.001
LIU Xin, ZHANG Xiaoyu. Development Analysis of Active Long-Term On-Orbit Cryogenic Propellant Boil-Off Control Technology[J]. Journal of Deep Space Exploration, 2017, 4(3): 203-211. doi: 10.15982/j.issn.2095-7777.2017.03.001
Citation: LIU Xin, ZHANG Xiaoyu. Development Analysis of Active Long-Term On-Orbit Cryogenic Propellant Boil-Off Control Technology[J]. Journal of Deep Space Exploration, 2017, 4(3): 203-211. doi: 10.15982/j.issn.2095-7777.2017.03.001

低温推进剂长期在轨蒸发量主动控制技术发展分析

doi: 10.15982/j.issn.2095-7777.2017.03.001

Development Analysis of Active Long-Term On-Orbit Cryogenic Propellant Boil-Off Control Technology

  • 摘要:

    为满足深空探测任务要求,基于低温推进剂长期在轨蒸发量主动控制技术的应用需求,对国内外低温推进剂长时间在轨蒸发量主动控制技术研究进展进行了分析,结合国内技术现状对低温推进剂长期在轨蒸发量主动控制关键技术进行了梳理,可为低温运载系统深空探测任务的开展提供参考。

  • [1] 胡伟峰,申麟,彭小波,等. 低温推进剂长时间在轨的蒸发量控制关键技术分析[J]. 低温工程,2011(3):59-66. Hu W F,Shen L,Peng X B,et al. Key technology analysis of boil-off control study on cryogenic propellant long-term application on orbit[J]. Cryogenics,2011(3):59-66.
    [2] 胡伟峰,申麟,杨建民,等. 低温推进剂长时间在轨的蒸发量控制技术进展[J]. 导弹与航天运载技术,2009(6):28-34. Hu W F,Shen L,Yang J M,et al. Progress of study on transpiration control technology for orbit long-term applied cryogenic propellant[J]. Missiles and Space Vehicles,2009(6):28-34.
    [3] Hastings L J,Plachta D W,Salerno L,et al. An overview of NASA efforts on zero boil-off storage of cryogenic propellants[J]. Cryogenics,2001,41(2002):833-839.
    [4] De Kruif J S,Kutter B F. Centaur upper stage applicability for several-day mission durations with minor insulation modifications[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati,OH:AIAA,2007.
    [5] Michael D,Kirk A,Bernard K. Design and development of an in-space deployable sun shield for the atlas centaur[C]//AIAA Space 2008 Conference & Exposition. San Diego,California:AIAA,2008.
    [6] Plachta D W,Christie R J,Jurns J M,et al. ZBO cryogenic propellant storage applied to a Mars sample return mission concept[J]. Advances in Cryogenic Engineering:Transactions of the Cryogenic Engineering Conference. 2006,56:205-212.
    [7] Doherty M P,Gaby J D,Salerno L J,et al. Cryogenic fluid management technology for Moon and Mars missions[C]//AIAA SPACE 2009 Conference & Exposition. Pasadena,California:AIAA,2009.
    [8] Kyle C,Sarah K,Justin K. Cryogenic fluid storage for the mission to Mars[D]. USA:Texas Tech University,1999.
    [9] Nast T,Frank D. Cryogenic propellant boil-off reduction approaches[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando,Florida:AIAA,2011.
    [10] McLean C H,Mills G L,Riesco M E. Long term space storage and delivery of cryogenic propellants for exploration[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford,CT:NASA,2008.
    [11] Keller C W. Thermal performance of multilayer insulations[R]. USA:NASA,1974.
    [12] Martin J J,Smith J W. Cryogenic testing of a foam-multilayer insulation concept in a simulated orbit hold environment[C]//AIAA/ASME/SAE/ASEE 29th Joint Propulsion Conference and Exhibit. Washington,D.C:AIAA,1993.
    [13] Robert J S,Richard H K. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630,530 and 152 R[C]//27th Joint Propulsion Conference. Sacramento,CA:AIAA,1991.
    [14] Knoll R H,Stochl R J,Sanabria R. A review of candidate multilayer insulation systems for potential use on wet-launch LH2 tankage for the space exploration initiative Lunar missions[C]//27th Joint Propulsion Conference. Sacramento,CA:AIAA,1991.
    [15] Hastings L J,Hedayat A,Brown T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage[R]. USA:NASA,2004.
    [16] Christie R J,Plachta D W. Zero boil-off system design and thermal analysis of the bimodal thermal nuclear rocket[J]. Space Technology&Applications International Forum-Staif,2006,813(1):494-501.
    [17] Haberbusch M S,Nguyen C T,Stochl R J,et al. Development of no-vent liquid hydrogen storage system for space applications[J]. Cryogenics,2010(50):541-548.
    [18] Plachta D W. hybrid thermal control testing of a cryogenic propellant tank[R]. USA:NASA,1999.
    [19] Panzarella C H,Kassemi M. Comparison of several zero-boil-off pressure control strategies for cryogenic fluid storage in microgravity[J]. Journal of Propulsion and Power,2009,25(2):424-434.
    [20] Panzarella C,Plachta D,Kassemi M. Pressure control of large cryogenic tanks in microgravity[J]. Cryogenics,2004,44(6):475-483.
    [21] Hastings L J,Tucker S P,Flachbart R H. Marshall space flight center in-space cryogenic fluid management program overview[R]. USA:NASA,2005.
    [22] Kassemi M,Panzarella C. Ventless pressure control of two-phase propellant tanks in microgravity[J]. Annals New York Academy of Sciences,2004,1027(1):511-528
    [23] Segado M A,Hannon C L,Brisson J G. Collins cryocooler design for zero-boil-off storage of liquid hydrogen and oxygen in space[C]//Advances in Cryogenic Engineering:Transactions of the Cryogenic Engineering Conference-CEC. USA:American Institute of Physics,2010.
    [24] Hochstein J I,Ji H C,Aydelott J C. Effect of subcooling on the on-orbit pressurization rate of cryogenic propellant tankage[C]//AIAA/ASME 4th Joint Thermophysics and Heat Transfer Conference. Boston,Massachusetts:AIAA,1986.
    [25] Ryan H,Robert K,Gary O N. Thermal optimization and assessment of a long duration cryogenic propellant depot[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville,Tennessee:AIAA,2012.
    [26] Baik J. Zero-boil-off liquid hydrogen storage tanks[R]. USA:NASA,2009.
    [27] Plachta D,Kittel P. An updated zero boil-off cryogenic propellant storage analysis applied to upper stages or depots in an LEO environment[R]. USA:AIAA,2002.
    [28] Lin C S,Van Dresar N T,Hasan M M. A pressure control analysis of cryogenic storage systems[C]//AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference. Sacramento,CA:AIAA,1991.
    [29] Lin C S,Van Dresar N T,Hasan M M. Pressure control analysis of cryogenic storage systems[J]. Journal of Propulsion and Power,2004,20(3):480-485.
    [30] Guernsey C S,Baker R S,Plachta D. Cryogenic propulsion with zero boil-off storage applied to outer planetary exploration[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson,Arizona:AIAA,2005.
    [31] Zakar D R,Baldauff R W,Hoang T T. Cryogenic loop heat pipe for zero-boil-off cryogen[R]. USA:AIAA,2015.
    [32] Ho S H,Rahman M M. Three-dimensional analysis for liquid hydrogen in a cryogenic storage tank with heat pipe-pump system[J]. Cryogenics,2008(48):31-41.
    [33] Ho S H,Rahman M M. Transient analysis of cryogenic liquid-hydrogen storage tank with intermittent forced circulation[J]. Journal of Thermophysics and Heat Transfer,2010,24(2):374-380.
    [34] Plachta D W,Johnson W L,Feller J R. Cryogenic boil-off reduction system testing[R]. USA:AIAA,2014.
    [35] Haberbusch M S,Nguyen C T,Stochl R J,et al. Development of no-vent liquid hydrogen storage system for space applications[J]. Cryogenics,2010(50):541-548.
    [36] Howard F,Brian L,Mark V. Liquid oxygen/liquid methane integrated propulsion system test bed[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego,California:AIAA,2011.
    [37] Chato D J. Cryogenic technology development for exploration missions[C]//45th AIAA Aerospace Sciences Meeting and Exhibit Reno. Nevada:AIAA,2007.
    [38] David G,Jeff S,Chris M,et al. Long term cryogenic storage technologies overview for NASA exploration applications[C]//42nd AIAA Thermophysics Conference. Honolulu,Hawaii:AIAA,2011.
    [39] 冶文莲,王丽红,王田刚,等. 低温制冷机与ZBO存储系统耦合数值模拟[J]. 低温与超导,2013,41(8):19-23. Ye W L,Wang L H,Wang T G,et al. Numerical simulation of cryocooler and zero boil-off storage system coupling[J]. Cryogenics & Superconductivity,2013,41(8):19-23.
    [40] 冶文莲,王小军,王田刚,等. 液氢贮箱零蒸发数值模拟与分析[J]. 低温与超导,2012,40(11):11-17. Ye W L,Wang X J,Wang T G,et al. Numerical simulation and analysis of zero boil-off in a liquid hydrogen storage tank[J]. Cryogenics & Superconductivity,2012,40(11):11-17.
    [41] 张磊,潘雁频. 带有浸没喷射装置的液氢ZBO储箱温度场模拟研究[J]. 真空与低温,2013,19(1):19-24. Zhang L,PanY P. A numerical study on the temperature field of liquid hydrogen zero boil-off storage tank with injection nozzles[J]. Vacuum and Cryogenics,2013,19(1):19-24.
    [42] 程进杰,孙郁,杨建斌,等. ZBO存储低温储箱内的压力变化模拟分析[J]. 低温与超导,2014,42(1):17-20. Cheng J J,Sun Y,Yang J B,et al. Modeling the pressure variation law of cryogenic tank in the process of ZBO storage[J]. Cryogenics & Superconductivity,2014,42(1):17-20.
  • [1] 尕永婧, 王浩苏, 张青松, 徐珊姝, 吴义田.  垂直着陆过程推进剂流动行为特性及影响分析 . 深空探测学报(中英文), 2021, 8(1): 42-50. doi: 10.15982/j.issn.2096-9287.2021.20200012
    [2] 陈昶文, 武荣.  宽范围输入输出离子电推进屏栅电源的设计 . 深空探测学报(中英文), 2020, 7(4): 407-416. doi: 10.15982/j.issn.2095-7777.2020.20200051
    [3] 李斌, 仲伟业, 王生旺, 张立军, 梁世光.  VLBI测轨的S/X致冷接收机技术 . 深空探测学报(中英文), 2020, 7(4): 347-353. doi: 10.15982/j.issn.2095-7777.2020.20200029
    [4] 郑为民, 张娟, 徐志骏, 刘磊, 童力, 张秀忠.  实时VLBI处理机技术 . 深空探测学报(中英文), 2020, 7(4): 354-361. doi: 10.15982/j.issn.2095-7777.2020.20200027
    [5] 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明.  深空探测器自主控制技术综述 . 深空探测学报(中英文), 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
    [6] 陈莉丹, 谢剑锋, 刘勇, 陈明.  中国深空探测任务轨道控制技术综述 . 深空探测学报(中英文), 2019, 6(3): 210-218. doi: 10.15982/j.issn.2095-7777.2019.03.002
    [7] 杨洪伟, 宝音贺西.  小行星附近制导与控制研究综述 . 深空探测学报(中英文), 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
    [8] 甄贺伟, 徐晓玲, 李果, 周祚万.  应用于空间微生物防护的多尺度杂化抗菌剂研究 . 深空探测学报(中英文), 2019, 6(1): 37-45. doi: 10.15982/j.issn.2095-7777.2019.01.006
    [9] 周成, 吴延龙, 魏延明, 李永, 王戈, 丛云天, 孙鲲, 王磊.  空间核电推进系统比质量优化建模及其木星探测应用分析 . 深空探测学报(中英文), 2018, 5(4): 361-366. doi: 10.15982/j.issn.2095-7777.2018.04.006
    [10] 栾恩杰.  深远空连续推进动力与施图林格解的解析 . 深空探测学报(中英文), 2018, 5(4): 301-322. doi: 10.15982/j.issn.2095-7777.2018.04.001
    [11] 汤章阳, 周成, 韩冬, 马雪, 陈涛.  大功率轨道转移航天器全电推进系统研究 . 深空探测学报(中英文), 2018, 5(4): 367-373. doi: 10.15982/j.issn.2095-7777.2018.04.007
    [12] 李宗良, 高俊, 刘国西, 周成, 汤章阳, 邹达人.  小行星探测电推进系统方案研究 . 深空探测学报(中英文), 2018, 5(4): 347-353. doi: 10.15982/j.issn.2095-7777.2018.04.004
    [13] 李永, 丁凤林, 周成.  深空探测推进技术发展趋势 . 深空探测学报(中英文), 2018, 5(4): 323-330. doi: 10.15982/j.issn.2095-7777.2018.04.002
    [14] 刘欣, 张晓屿.  热力学排气系统压力控制地面原理实验研究 . 深空探测学报(中英文), 2018, 5(3): 292-298. doi: 10.15982/j.issn.2095-7777.2018.6.013
    [15] 刘一薇.  “实践9号”卫星电推进首次在轨试验验证 . 深空探测学报(中英文), 2017, 4(3): 245-251. doi: 10.15982/j.issn.2095-7777.2017.03.007
    [16] 潘迅, 泮斌峰.  基于同伦方法三体问题小推力推进转移轨道设计 . 深空探测学报(中英文), 2017, 4(3): 270-275. doi: 10.15982/j.issn.2095-7717.2017.03.011
    [17] 解家春, 霍红磊, 苏著亭, 赵泽昊.  核热推进技术发展综述 . 深空探测学报(中英文), 2017, 4(5): 417-429. doi: 10.15982/j.issn.2095-7777.2017.05.003
    [18] 江秀强, 陶婷, 杨威, 李爽.  附着小天体的最优制导控制方法 . 深空探测学报(中英文), 2015, 2(1): 53-60. doi: 10.15982/j.issn.2095-7777.2015.01.008
    [19] 杨福全, 赵以德, 李娟, 耿海, 张天平, 周海燕.  主带小行星采样返回任务中的离子电推进应用方案 . 深空探测学报(中英文), 2015, 2(2): 168-173. doi: 10.15982/j.issn.2095-7777.2015.02.011
    [20] 刘宇鑫, 尚海滨, 王帅.  地球静止轨道卫星电推进位保策略研究 . 深空探测学报(中英文), 2015, 2(1): 80-87. doi: 10.15982/j.issn.2095-7777.2015.01.012
  • 加载中
计量
  • 文章访问数:  2301
  • HTML全文浏览量:  15
  • PDF下载量:  948
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-21
  • 修回日期:  2017-06-01
  • 刊出日期:  2017-06-01

低温推进剂长期在轨蒸发量主动控制技术发展分析

doi: 10.15982/j.issn.2095-7777.2017.03.001

摘要: 

为满足深空探测任务要求,基于低温推进剂长期在轨蒸发量主动控制技术的应用需求,对国内外低温推进剂长时间在轨蒸发量主动控制技术研究进展进行了分析,结合国内技术现状对低温推进剂长期在轨蒸发量主动控制关键技术进行了梳理,可为低温运载系统深空探测任务的开展提供参考。

English Abstract

刘欣, 张晓屿. 低温推进剂长期在轨蒸发量主动控制技术发展分析[J]. 深空探测学报(中英文), 2017, 4(3): 203-211. doi: 10.15982/j.issn.2095-7777.2017.03.001
引用本文: 刘欣, 张晓屿. 低温推进剂长期在轨蒸发量主动控制技术发展分析[J]. 深空探测学报(中英文), 2017, 4(3): 203-211. doi: 10.15982/j.issn.2095-7777.2017.03.001
LIU Xin, ZHANG Xiaoyu. Development Analysis of Active Long-Term On-Orbit Cryogenic Propellant Boil-Off Control Technology[J]. Journal of Deep Space Exploration, 2017, 4(3): 203-211. doi: 10.15982/j.issn.2095-7777.2017.03.001
Citation: LIU Xin, ZHANG Xiaoyu. Development Analysis of Active Long-Term On-Orbit Cryogenic Propellant Boil-Off Control Technology[J]. Journal of Deep Space Exploration, 2017, 4(3): 203-211. doi: 10.15982/j.issn.2095-7777.2017.03.001
参考文献 (42)

目录

    /

    返回文章
    返回