中文核心期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳帆航天器的关键技术

胡海岩

胡海岩. 太阳帆航天器的关键技术[J]. 深空探测学报(中英文), 2016, 3(4): 334-344. doi: 10.15982/j.issn.2095-7777.2016.04.005
引用本文: 胡海岩. 太阳帆航天器的关键技术[J]. 深空探测学报(中英文), 2016, 3(4): 334-344. doi: 10.15982/j.issn.2095-7777.2016.04.005
HU Haiyan. Key Technologies of Solar Sail Spacecraft[J]. Journal of Deep Space Exploration, 2016, 3(4): 334-344. doi: 10.15982/j.issn.2095-7777.2016.04.005
Citation: HU Haiyan. Key Technologies of Solar Sail Spacecraft[J]. Journal of Deep Space Exploration, 2016, 3(4): 334-344. doi: 10.15982/j.issn.2095-7777.2016.04.005

太阳帆航天器的关键技术

doi: 10.15982/j.issn.2095-7777.2016.04.005

Key Technologies of Solar Sail Spacecraft

  • 摘要: 将太阳帆航天器所涉及的关键技术划分为4个方面:总体设计、轨道和姿态动力学与控制、太阳帆材料及其性能、太阳帆折叠与展开。针对每项关键技术,基于对国外长期研究结果进行分析并阐述主要技术特征,梳理国内相关研究进展,包括笔者与合作者的研究成果,分析存在的主要问题。根据上述分析,指出我国发展太阳帆航天器应该重视的若干问题。
  • [1] Tsuda Y,Mori O,Funase R,et al. Achievement of IKAROS-Japanese deep space solar sail demonstration mission[J]. Acta Astronautica,2013,88(1):183-188.
    [2] Johnson L,Whorton M,Heaton A. Nano sail-d:a solar sail demonstration mission[J]. Acta Astronautica,2011,68(5-6):571-575.
    [3] 沈自才,张帆,赵春晴,等. IKAROS太阳帆的关键技术分析与启示[J].航天器工程,2012,21(2):101-107. Shen Z C,Zhang F,Zhao C Q,et al. Key technology analysis and enlightenment of IKAROS solar sail[J]. Spacecraft Engineering,2012,21(2):101-107.
    [4] Wie B. Hovering Control of a solar sail gravity tractor spacecraft for asteroid deflection[C]//Proceedings of the 2007 Planetary Defense Conference.[S.l.]:[s.n.],2007,AAS-07-145.
    [5] Gao Y T,Wu J Y. The optimal control for the tethered system formed by an asteroid and a solar sail,Advances in Space Research[J]. 2016,57:1002-1014.
    [6] 宋斌,颜根廷,张化岚,等. 太阳帆航天器系统初步设想[C]//中国宇航学会深空探测技术专业委员会第八届学术年会论文集. 上海:CDSET,2011,51-58.
    [7] 钱航,郑建华,李明涛. 星际探测太阳帆行星和太阳借力轨道全局优化[J]. 国防科技大学学报,2016,38(1):137-142. Qian H,Zheng J H,Li M T. Global optimization of solar sail gravity assist and solar photonic assist trajectory for interstellar mission[J]. Journal of National University of Defense Technology,2016,38(1):137-142.
    [8] 马鑫,杨萱,郑建华,等. 太阳帆柔性结构动力学仿真分析[J]. 空间控制技术与应用,2014,40(3):36-46. Ma X,Yang X,Zheng J H,et al. Simulation and analysis for the flexible structure of solar sail spacecraft[J]. Aerospace Contrd and Application,2014,40(3):36-46.
    [9] 刘宇飞,荣思远,沈凡,等. 太阳帆探测器构型选择研究[C]//中国宇航学会深空探测技术专业委员会第十届学术年会论文集. 北京:CDSET,2013,51-58.
    [10] 钱航,郑建华,吴霞,等. 太阳帆推进任务的快速仿真方法[J]. 空间控制技术与应用,2016,42(2):8-13. Qian H,Zheng J H,Wu X,et al. Method of mission analysis for solar sail exploration based on STK[J]. Aerospace Contrd and Application,2016,42(2):8-13.
    [11] Wie B. Solar Sail attitude control and dynamics,Part 1[J]. Journal of Guidance,Control and Dynamics. 2004,27(4):526-535.
    [12] Wie B. Solar Sail attitude control and dynamics,Part 2[J]. Journal of Guidance,Control and Dynamics. 2004,27(4):536-544.
    [13] 韩艳铧,张震亚,贾杰. 太阳帆航天器姿态控制技术综述[J]. 航天器环境工程,2013,30(6):667-674. Han Y H,Zhang Z Y,Jia J. Review of attitude control techniques for solar spacecraft[J]. Space Environment Engineering,2013,30(6):667-674.
    [14] 龚胜平. 太阳帆航天器动力学与控制研究[D]. 北京:清华大学,2009.
    [15] 曾祥远. 深空探测太阳帆航天器新型轨道设计[D]. 北京:清华大学,2013.
    [16] Gong S P,Li J F. Orbital motions of a solar sail around the L2 Earth-Moon libration point[J]. Journal of Guidance,Control and Dynamics,2014,37(4),349-356.
    [17] Gong S P,Li J F. Equilibria near asteroids for solar sails with reflection control devices[J]. Astrophysics in Space Science,2015,355:213-223
    [18] Gong S P,Li J F. Optimal attitude maneuver of an axisymmetric spinning solar sail[J]. IEEE Transactions on Aerospace and Electronic Systems,2016,51(2):1462-1474.
    [19] 史晓宁. 太阳帆深空探测轨道控制与优化方法研究[D]. 哈尔滨:哈尔滨工业大学,2013.
    [20] 史晓宁,荣思远,白瑜亮. 太阳帆航天器行星分段捕获控制方法研究[J]. 2016,上海航天,33(2):87-93. Shi J N,Rong S Y,Bai Y L. Study on solar sail planet-centered segmented capture method[J]. 2016,Aerospace Shanghai,33(2):87-93.
    [21] 刘家夫. 复杂机构结构太阳帆航天器动力学建模与控制问题研究[D]. 哈尔滨:哈尔滨工业大学,2012.
    [22] 罗超,郑建华,高东. 太阳帆航天器的轨道动力学和轨道控制研究[J]. 宇航学报,2009,30(6):2111-2117. Luo C,Zheng J H,Gao D. Study on orbit dynamics and control of solar-sail spacecraft[J]. Journal of Astronautics,2009,30(6):2111-2117.
    [23] 罗超,郑建华. 太阳帆日心定点悬浮转移轨道设计[J]. 航天器工程,2014,23(3):12-17. Luo C,Zheng J H. Solar sail trajectory design for transferring heliocentric fixed displaced orbit[J]. Spacecraft Engineering,2014,23(3):12-17.
    [24] 钱航,郑建华,吴霞,等. 非理想太阳帆受阴影影响的地球逃逸轨道探讨[J]. 航天器工程,2014,23(2):19-23. Qian H,Zheng J H,Wu X,et al. Preliminary discussion on escape trajectories with shadow for nonideal solar sailing[J]. Spacecraft Engineering,2014,23(2):19-23.
    [25] Yokota R,Miyauchi M. Development of heat sealable polyimide thin films with high space environmental Stability for Solar Sail IKAROS Membrane[C]//Protection of Materials and Structures from the Space Environment. Berlin:Springer-Verlag,2014:303-316.
    [26] Ruth H P,Paiul A C. Advanced materials for space application[J]. Acta Astronautica,2007,61(11-12):1121-1129.
    [27] Bryant R G,Seaman S T,Wilkie W K. Selection and manufacturing of membrane materials for solar sails[C]//Advances in Solar Sailing. 2014. Berlin:Springer-Verlag,525-540.
    [28] Albarado T L. Electron Exposure measurements of candidate solar sail materials[J]. ASME Journal of Solar Energy Engineering,2005,127(1):125-130.
    [29] Shimamura H,Yamagata I. Degradation of mechanical properties of polyimide film exposed to space environment[J]. Journal of Spacecraft and Rockets,2009,46(1):15-21.
    [30] 黄小琦,王立,刘宇飞. 太阳帆飞行器帆体结构材料选用分析[C]//中国宇航学会深空探测技术专业委员会第九届学术年会论文集. 北京:CDSET,2012,1083-1091.
    [31] 陈罗婧,王沫,吕秋杰,等. 国外太阳帆薄膜材料选择及帆面展开方式研究进展[J]. 空间电子技术,2015(3):18-26. Chen L J,Wang M,Lv Q J,et al. Recent progress on solar sail membrane materials and deployment technology[J]. Space Electronic Technology,2015,3:18-26.
    [32] 刘金刚,倪洪江,高鸿,等. 超薄聚酰亚胺薄膜研究与应用进展,航天器环境工程[J]. 2014,31(5):470-475. Liu J G,Ni H J,Gao H,et al. Research and application of ultrathin polyimide films[J]. Space Environment Engineering,2014,31(5):470-475.
    [33] 沈自才,高鸿,牟永强. 空间近紫外辐照聚酰亚胺薄膜力学性能演化机理[J]. 真空科学与技术学报,2016,36(4):482-487. Chen Z C,Gao H,Mu Y Q,et al. Mechanism for changes in mechanical properties of polyimide membrane irradiated by near ultraviolet light[J]. Chinese Journal of Vacuum Science and Technology,2016,36(4):482-487.
    [34] 沈自才,郭亮,马子良,等. 聚酰亚胺薄膜在γ射线辐照下的力学性能退化研究[J]. 航天器环境工程,2016,33(1):100-104. Chen Z C,Guo L,Ma Z L,et al. Mechanical property degradation of polyimide film under gamma ray radiation[J]. Space Environment Engineering,2016,33(1):100-104.
    [35] Miura K,Natori M. 2-D Array experiment on bboard a space flyer unit[J]. Space Solar Power Review,1985,5(4):345-356.
    [36] Defocatiis D S A,Guest S D. Deployable membranes designed from folding tree leaves[J]. Philosophical Transaction of the Royal Society of London,Series A-Mathematical Physical and Engineering Sciences,2002,360(1791):227-238.
    [37] Melnikov V M,Koshelev V A. Large space structures formed by centrifugal Forces[J]. Earth Space Institute Book Series 4,Amsterdam:Gordon and Breach,1998,21-61.
    [38] Miyazaki Y,Shirasawa Y,Mori O,Sawada H. Finite element analysis of deployment of gossamer Space structure[C]//ECCOMAS Thematic Conference on Multibody Dynamics. Belgium:ECCOMAS,2011.
    [39] Murphy D M,Macy B D,Gaspar J L. Demonstration of a 10-m solar sail system[C]//Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference.[S.l.]:AIAA,2004:AIAA 2004-1576.
    [40] Murphy D M,McEachen M E,Macy B D,Gaspar J L. Demonstration of a 20-m solar sail system[C]//Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference.[S.l.]:AIAA,2005,AIAA-2005-2126.
    [41] Shirasawa Y,Mori O,Sawada H,Imaizumi T,et al. Demonstration of solar sail deployment system using a high altitude balloon[C]//Proceedings of The 27th International Symposium on Space Technology and Science.[S.l.]:[s.n.],2009,2009-d-36.
    [42] 黄小琦,王立,刘宇飞,杨辰等,大型太阳帆薄膜折叠及展开过程数值分析[J]. 中国空间科学技术,2014,4:31-38. Huang X Q,Wang L,Liu Y F,et al. Numerical analysis on the deployment and folding process of large-scale solar sail membrane[J]. Chinese Space Science and Technology,2014,4:31-38.
    [43] 卫剑征,谭惠丰,马瑞强,宋博,充气式展开太阳帆结构动力学特性分析及展开试验[C]//西安:空间结构展开学术会议文集,2014,33.
    [44] 周晓俊,霍倩,周春燕,基于ADAMS的太阳帆展开绳索的建模与仿真[J]. 计算机辅助工程,2015,22(S1):194-197. Zhou X J,Huo Q,Zhou C Y. Modeling and simulation on solar sail deployment ropes based on Adams[J]. Computer Aided Engineering,2015,22(S1):194-197.
    [45] Liu C,Tian Q,Yan D,Hu H Y. Dynamic analysis of membrane systems undergoing overall motions,large deformations and wrinkles via thin shell elements of ANCF[J]. Computer Methods in Applied Mechanics and Engineering,2013,258(1):81-95.
    [46] Zhao J,Tian Q,Hu H Y. Deployment Dynamics of a simplified spinning IKAROS solar sail via Absolute Coordinate Based Method[J]. Acta Mechanica Sinica,2013,29(1):132-142.
    [47] 赵将,刘铖,田强,等. 粘弹性薄膜太阳帆自旋展开动力学分析[J]. 力学学报,2013,45(5):746-754. Zhao J,Liu C,Tian Q,et al. Dynamic analysis of spinning deployment of a solar sail composed of viscoelastic membranes[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(5):746-754.
    [48] 周晓俊,周春燕,张兴新,等. 太阳帆自旋展开动力学地面模拟试验研究[J]. 振动工程学报,2015,28(2):175-182. Zhou X J,Zhou C Y,Zhang X X,et al. Ground simulation tests of spinning deployment dynamics of a solar sail[J]. Journal of Vibration Engineering,2015,28(2):175-182.
  • [1] 辛鹏飞, 吴跃民, 荣吉利, 危清清, 刘宾, 刘鑫.  月面探测器圆形薄膜太阳翼展开动力学建模与分析 . 深空探测学报(中英文), 2020, 7(3): 255-263. doi: 10.15982/j.issn.2095-7777.2020.20191128005
    [2] 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明.  深空探测器自主控制技术综述 . 深空探测学报(中英文), 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
    [3] 杨洪伟, 宝音贺西.  小行星附近制导与控制研究综述 . 深空探测学报(中英文), 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
    [4] 马传令, 刘勇, 梁伟光, 张尧.  “嫦娥4号”中继星应急轨道控制策略设计与分析 . 深空探测学报(中英文), 2019, 6(3): 269-276. doi: 10.15982/j.issn.2095-7777.2019.03.011
    [5] 陈莉丹, 谢剑锋, 刘勇, 陈明.  中国深空探测任务轨道控制技术综述 . 深空探测学报(中英文), 2019, 6(3): 210-218. doi: 10.15982/j.issn.2095-7777.2019.03.002
    [6] 李革非, 盛庆轩, 刘勇.  基于交会模式的月球大椭圆轨道编队飞行控制 . 深空探测学报(中英文), 2019, 6(3): 261-268. doi: 10.15982/j.issn.2095-7777.2019.03.010
    [7] 彭德云, 邹雪梅, 李亮.  月球背面探测任务多目标协同控制模式设计 . 深空探测学报(中英文), 2018, 5(6): 544-553. doi: 10.15982/j.issn.2095-7777.2018.06.007
    [8] 刘欣, 张晓屿.  低温推进剂长期在轨蒸发量主动控制技术发展分析 . 深空探测学报(中英文), 2017, 4(3): 203-211. doi: 10.15982/j.issn.2095-7777.2017.03.001
    [9] 朱政帆, 高扬.  空间小推力轨道最优Bang-Bang控制的两类延拓解法综述 . 深空探测学报(中英文), 2017, 4(2): 101-110. doi: 10.15982/j.issn.2095-7777.2017.02.001
    [10] 刘延杰, 朱圣英, 崔平远.  小天体安全着陆与表面探测控制方法研究 . 深空探测学报(中英文), 2016, 3(4): 370-376. doi: 10.15982/j.issn.2095-7777.2016.04.009
    [11] 徐彦, 郑耀, 匡松松, 周盛.  展开式月球基地热防护结构方案研究 . 深空探测学报(中英文), 2016, 3(2): 168-174. doi: 10.15982/j.issn.2095-7777.2016.02.012
    [12] 邬静云, 高有涛.  利用绳系太阳帆减缓小行星自转的技术研究 . 深空探测学报(中英文), 2016, 3(1): 47-50. doi: 10.15982/j.issn.2095-7777.2016.01.007
    [13] 郑艺裕, 崔祜涛, 王晓芳.  附着小天体的动态面鲁棒制导与控制方法 . 深空探测学报(中英文), 2015, 2(2): 155-161. doi: 10.15982/j.issn.2095-7777.2015.02.009
    [14] 李爽, 陶婷, 江秀强, 张树瑜, 周杰.  月球软着陆动力下降制导控制技术综述与展望 . 深空探测学报(中英文), 2015, 2(2): 111-119. doi: 10.15982/j.issn.2095-7777.2015.02.002
    [15] 江秀强, 陶婷, 杨威, 李爽.  附着小天体的最优制导控制方法 . 深空探测学报(中英文), 2015, 2(1): 53-60. doi: 10.15982/j.issn.2095-7777.2015.01.008
    [16] 武长青, 徐瑞, 朱圣英.  基于对数势函数的深空探测器姿态规划与控制方法 . 深空探测学报(中英文), 2015, 2(4): 365-370. doi: 10.15982/j.issn.2095-7777.2015.04.011
    [17] 曾祥远, 龚胜平, 李俊峰, 蒋方华, 宝音贺西.  应用太阳帆悬停探测哑铃形小行星 . 深空探测学报(中英文), 2015, 2(1): 48-52. doi: 10.15982/j.issn.2095-7777.2015.01.007
    [18] 郑燕红, 邓湘金, 赵志晖, 姚猛, 邹昕.  月面回转钻进采样非脆弱鲁棒控制 . 深空探测学报(中英文), 2014, 1(4): 315-319. doi: 10.15982/j.issn.2095-7777.2014.04.012
    [19] 贺晶, 龚胜平, 李俊峰.  利用逃逸能量的太阳帆最快交会轨迹优化 . 深空探测学报(中英文), 2014, 1(1): 60-66.
    [20] 侯建文, 周杰.  “火星科学实验室”巡航段导航、制导与控制 . 深空探测学报(中英文), 2014, 1(2): 110-116.
  • 加载中
计量
  • 文章访问数:  2560
  • HTML全文浏览量:  31
  • PDF下载量:  1497
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 修回日期:  2016-09-15

太阳帆航天器的关键技术

doi: 10.15982/j.issn.2095-7777.2016.04.005

摘要: 将太阳帆航天器所涉及的关键技术划分为4个方面:总体设计、轨道和姿态动力学与控制、太阳帆材料及其性能、太阳帆折叠与展开。针对每项关键技术,基于对国外长期研究结果进行分析并阐述主要技术特征,梳理国内相关研究进展,包括笔者与合作者的研究成果,分析存在的主要问题。根据上述分析,指出我国发展太阳帆航天器应该重视的若干问题。

English Abstract

胡海岩. 太阳帆航天器的关键技术[J]. 深空探测学报(中英文), 2016, 3(4): 334-344. doi: 10.15982/j.issn.2095-7777.2016.04.005
引用本文: 胡海岩. 太阳帆航天器的关键技术[J]. 深空探测学报(中英文), 2016, 3(4): 334-344. doi: 10.15982/j.issn.2095-7777.2016.04.005
HU Haiyan. Key Technologies of Solar Sail Spacecraft[J]. Journal of Deep Space Exploration, 2016, 3(4): 334-344. doi: 10.15982/j.issn.2095-7777.2016.04.005
Citation: HU Haiyan. Key Technologies of Solar Sail Spacecraft[J]. Journal of Deep Space Exploration, 2016, 3(4): 334-344. doi: 10.15982/j.issn.2095-7777.2016.04.005
参考文献 (48)

目录

    /

    返回文章
    返回