高级检索

面向高精度历表的月球轨道与天平动建模及LLR数据应用

Lunar Orbit, Libration Modeling and LLR Data Application for High-precision Ephemeris

  • 摘要: 提出一套统一建模与程序化实现的月球动力学框架。基于广义相对论弱场近似,系统整合了轨道运动与双层受迫天平动过程中的主要物理效应,包括主带小天体引力、太阳J2项、潮汐变形与转动惯量时延,统一了动力学推导、参考系定义与时间系统规范,构建了模块化、高一致性的建模与处理体系。在此基础上,处理了2015—2021年的双程月球激光测距(Lunar Laser Ranging,LLR)观测数据,独立完成了月面反射器与地面测站的坐标解算。结果表明,轨道预报与D+E430星历在地月连线方向的最大差异控制在0.182  m以内,天平动欧拉角50年预测偏差保持在600 mas量级;LLR数据平差后的单程残差均方根(root mean square,RMS)分别达到2.46 cm(反射器平差后)与1.68 cm(地面站平差后)。证了统一建模体系的物理一致性与实测适配性,为自主编制高精度月球历表提供了关键技术支撑。

     

    Abstract: This study proposes a unified modeling and computational framework for lunar dynamics. Based on the weak-field approximation of general relativity, the framework systematically incorporates the major physical effects involved in orbital motion and dual-layer forced lunar libration, including gravitational perturbations from main-belt asteroids, the solar J2 term, tidal deformation, and inertia tensor delay. It establishes a modular and highly consistent system by unifying dynamical derivations, reference frame definitions, and time system specifications. Using this framework, two-way Lunar Laser Ranging (LLR) data from 2015 to 2021 were processed, while the coordinates of lunar retroreflectors and terrestrial tracking stations were independently solved. The results show that the maximum deviation between the predicted orbit and the DE430 ephemeris along the Earth-Moon line is within 0.182 m, and the predicted error in physical libration Euler angles remains within 600 mas over 50 years. The post-fit root mean square (RMS) of one-way LLR residuals reaches 2.46 cm after reflector adjustment and 1.68 cm after ground station adjustment. This study demonstrates the physical consistency and practical adaptability of the unified modeling system, providing key technical support for the autonomous development of high-precision lunar ephemerides.

     

/

返回文章
返回