中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)核心期刊

中国高校百佳科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

小天体着陆抗扰轨迹优化方法

朱轩廷, 刘延杰, 彭菲

朱轩廷, 刘延杰, 彭菲. 小天体着陆抗扰轨迹优化方法[J]. 深空探测学报(中英文). DOI: 10.15982/j.issn.2096-9287.2025.20240026
引用本文: 朱轩廷, 刘延杰, 彭菲. 小天体着陆抗扰轨迹优化方法[J]. 深空探测学报(中英文). DOI: 10.15982/j.issn.2096-9287.2025.20240026
ZHU Xuanting, LIU Yanjie, PENG Fei. A Desensitized Trajectory Optimization Method for Landing of Small Bodies[J]. Journal of Deep Space Exploration. DOI: 10.15982/j.issn.2096-9287.2025.20240026
Citation: ZHU Xuanting, LIU Yanjie, PENG Fei. A Desensitized Trajectory Optimization Method for Landing of Small Bodies[J]. Journal of Deep Space Exploration. DOI: 10.15982/j.issn.2096-9287.2025.20240026

小天体着陆抗扰轨迹优化方法

基金项目: 山东省自然科学基金项目(ZR2023MF006,ZR2023QF176);空间碎片专项(KJSP2020020302);科工局稳定支持项目(HTKJ2022KL502001)
详细信息
    作者简介:

    朱轩廷(2000− ),男,硕士生,主要研究方向:飞行器导航、制导与控制。通信地址:青岛市崂山区松岭路99号,青岛科技大学自动化学院(266100)E-mail:519907088@qq.com

    刘延杰(1988− ),男,副教授,本文通信作者,主要研究方向:飞行器导航、制导与控制。通信地址:青岛市崂山区松岭路99号,青岛科技大学自动化学院(266100)E-mail:lyj8760rus@qust.edu.cn

  • 中图分类号: V448.2

A Desensitized Trajectory Optimization Method for Landing of Small Bodies

  • 摘要:

    针对探测器着陆小天体过程中存在动力学参数和状态不确知问题,提出了一种小天体着陆抗扰轨迹优化方法,以提升复杂环境下探测器着陆控制精度。考虑不确知参数影响建立小天体着陆增广随机状态方程,将小天体引力场的不确定性和探测器发动机推力误差作为着陆过程的过程噪声;推导了不确知性沿标称轨迹传播的线性协方差动态方程,将状态变量的协方差矩阵扩展为状态方程的新状态,并构造燃料消耗和状态协方差加权的联合性能指标,继而通过轨迹优化直接法进行最优控制问题解算,以提高轨迹的抗扰能力。以433Eros为例进行仿真分析,结果证明该方法能够克服随机参数对探测器的影响,提高着陆精度。

    Abstract:

    A desensitized trajectory optimization method was proposed to improve the precision of small body landing control in complex environments, under the influence of the uncertainty of dynamic parameters and state during small body landing. Firstly, considering the influence of uncertain parameters, the augmented stochastic state equation of small body landing was established, and the uncertainty of the gravitational field of small body and the thrust error of probe engine were regarded as the process noise of landing process. Then, the linear covariance dynamic equation of uncertainty propagating along the nominal trajectory was derived, the covariance matrix of state variables was extended to a new state of the state equation, and the joint performance index weighted by fuel consumption and state covariance was constructed. Then the optimal control problem was solved by direct trajectory optimization method and the trajectory’s desensitization was finally improved. Taking 433Eros as an example, the simulation results show that the proposed method can overcome the influence of random parameters in the process of small body landing and improve landing accuracy.

  • [1] 崔平远,赵冬越,朱圣英,等. 小天体主动附着制导与控制技术研究进展[J]. 宇航学报,2021,42(9):1057-1066.

    CUI P Y,ZHAO D Y,ZHU S Y,et al. Research progress of guidance and control technology for active landing of small celestial bodies[J]. Journal of Astronautics,2021,42(9):1057-1066.

    [2] 黄翔宇,徐超,郭敏文. 地外天体软着陆自主导航与控制技术研究进展[J]. 深空探测学报(中英文),2024,11(1):3-15.

    HUANG X Y,XU C,GUO M W. Research progress of autonomous navigation and control technology for extraterrestrial soft landing[J]. Journal of Deep Space Exploration,2024,11(1):3-15.

    [3]

    OBA Y,TAKANO Y,DWORKIN J P,et al. Ryugu asteroid sample return provides a natural laboratory for primordial chemical evolution[J]. Nature Commu-nications,2023,14(1):3107. doi: 10.1038/s41467-023-38518-1

    [4] 曾祥远,温童歌,李姿雯. 小天体着陆动力学研究进展[J]. 中国科学:技术科学,2024,54:761-785.

    ZENG X Y,WEN T G,LI Z. Recent development of landing dynamics over small celestial bodies[J]. Science in China:Technical Sciences,2024,54:761-785.

    [5]

    GE D,CUI P,ZHU S. Recent development of autonomous GNC technologies for small celestial body descent and landing[J]. Progress in Aerospace Sciences,2019,110:100551. doi: 10.1016/j.paerosci.2019.06.002

    [6]

    YANG H,LI S. Fast homotopy method for asteroid landing trajectory optimization using approximate initial costates[J]. Journal of Guidance,Control,and Dynamics,2019,42(3):585-597.

    [7]

    ZHAO Y,YANG H,LI S. Real-time trajectory optimi-zation for collision-free asteroid landing based on deep neural networks[J]. Advances in Space Research,2022,70(1):112-124. doi: 10.1016/j.asr.2022.04.006

    [8] 崔平远,龙嘉腾,朱圣英,等. 行星着陆轨迹优化技术研究进展[J]. 宇航学报,2021,42(6):677-686.

    CUI P Y,LONG J T,ZHU S Y,et al. Research progress of planetary landing trajectory optimization techniques[J]. Journal of Astronautics,2021,42(6):677-686.

    [9] 姚晗诚,齐瑞云. 火星着陆器进入段轨迹优化与制导研究进展[J]. 航天控制,2021,39(4):3-12.

    YAO H C,QI R Y. A research progress of trajectory optimization and guidance for mars lander[J]. Aerospace Control,2021,39(4):3-12.

    [10] 刘延杰,朱圣英,崔平远. 序列凸优化的小天体附着轨迹优化[J]. 宇航学报,2018,39(2):177-183.

    LIU Y J,ZHU S Y,CUI P Y. Soft landing trajectory optimization on asteroids by convex programming[J]. Journal of Astronautics,2018,39(2):177-183.

    [11] 陈友,郭金融,刘延杰,等. 融合相机和激光雷达的小天体运动状态估计方法[J]. 深空探测学报(中英文),2024,11(1):63-70.

    CHEN Y,GUO J R,LIU Y J,et al. A method for estimating motion state of small bodies based on fusion of camera and LIDAR[J]. Journal of Deep Space Exploration,2024,11(1):63-70.

    [12] 姚文龙,刘毅,邵巍,等. 小天体地形动态模拟与着陆视景仿真系统设计[J]. 深空探测学报(中英文),2022,9(4):427-437.

    YAO W L,LIU Y,SHAO W,et al. Design of terrain dynamic simulation and landing view simulation system for small celestial bodies[J]. Journal of Deep Space Exploration,2022,9(4):427-437.

    [13]

    CUI P,ZHANG C,LIANG Z. Closed-loop guidance for asteroid landing using stability-related control and three-dimensional convex curvature constraints[J]. IEEE Transactions on Aerospace and Electronic Systems,2023,59(3):2807-2822. doi: 10.1109/TAES.2022.3219043

    [14] 袁旭,朱圣英,乔栋,等. 小天体着陆动力学参数不确定性影响分析[J]. 深空探测学报(中英文),2014,1(2):134-139.

    YUAN X,ZHU S Y,QIAO D,et al. Impact analysis of dynamic parameters uncertainty on small celestial body landing[J]. Journal of Deep Space Exploration,2014,1(2):134-139.

    [15]

    CUI P,ZHAO Z,YU Z,et al. Terminal altitude maximization for Mars entry considering uncertainties[J]. Acta Astronautica,2018,145:446-455. doi: 10.1016/j.actaastro.2018.02.013

    [16] 胡海静,高艾,朱圣英,等. 考虑跟踪制导的小天体着陆轨迹闭环优化方法[J]. 宇航学报,2015,36(12):1384-1390.

    HU H J,GAO A,ZHU S Y,et al. Closed-loop trajectory optimization for precision landing on small bodies considering tracking guidance[J]. Acta Astronautica Sinica,2015,36(12):1384-1390.

    [17]

    ROBERT A, WERNER-DANIEL J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomy,1996,65(3):313-344.

    [18] 尚海滨,韦炳威,卢榉承. 小天体引力场建模技术进展[J]. 深空探测学报(中英文),2022,9(4):359-372.

    SHANG H B,WEI B H,LU J C. Recent advances in modeling gravity field of small bodies[J]. Journal of Deep Space Exploration,2022,9(4):359-372.

    [19]

    SEYWALD H,KUMAR R. Desensitized optimal traje-ctories[R]. Analytical Mechanics Associates Rept ,2003:3-16.

    [20]

    GELLER,DAVID K. Linear covariance techniques for orbital rendezvous analysis and autonomous onboard mission planning[J]. Journal of Guidance,Control,and Dynamics,2006,29(6):1404-1414.

    [21]

    TODD V S. Optimal trajectory-shaping with sensitivity and covariance techniques[D]. Cambridge:Massachusetts Institute of Technology,2010.

    [22] 袁旭,朱圣英. 基于伪谱法的小天体最优下降轨迹优化方法[J]. 深空探测学报(中英文),2016,3(1):51-55.

    YUAN X,ZHU S Y. Small body descent trajectory optimization based on pseudospectral method[J]. Journal of Deep Space Exploration,2016,3(1):51-55.

    [23]

    PATTERSON,MICHAEL A,ANIL V R. GPOPS-II:a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software,2014,41(1):1-37.

计量
  • 文章访问数:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 修回日期:  2024-06-08
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回