高级检索

激光测月数据处理及月面角反射器坐标估计

LLR Data Processing and Lunar Retro-Reflector Coordinate Estimation

  • 摘要: 针对目前国内外机构激光测月数据处理算法不公开的现状,建立了月球激光测距(Lunar Laser Ranging,LLR)数据处理模型,利用自研软件实现了广义相对论效应、大气延迟效应、地球潮汐和月球潮汐等模型算法,完成了高精度的LLR数据处理。研究表明:使用数据处理程序对 ILRS(International Lunar Ranging Service)发布的2006—2021年LLR标准点数据进行检核,得到的均方根残差约为3.7 cm。针对月面角反射器坐标与月球历表不匹配导致LLR数据检核精度降低的问题,使用最小二乘法对月面角反射器的坐标进行估计。 结果表明:以估计后的角反射器坐标作为程序输入,LLR数据检核精度提高约0.5 cm。

     

    Abstract: Given the current situation where laser ranging data processing algorithms from domestic and international organizations are not publicly available, in this paper an LLR data processing model was established first. Using self-developed software, which implements error algorithms for general relativity effects, atmospheric delay effects, Earth tides, and lunar tides, high-precision LLR data processing was achieved. The results indicate that when using the data processing program to validate the LLR standard point data published by the International Lunar Ranging Service (ILRS) for the years 2006 to 2021, the root mean square residual is approximately 3.7 cm. Thereinto, the root mean square residual of LLR data in 2014 and before is approximately 3cm, and the root mean square residual of LLR data after 2014 is approximately 4cm. Furthermore, to address the issue of reduced accuracy in LLR data validation due to discrepancies between lunar retroreflector coordinates and lunar ephemerides, the least squares method was employed to estimate the coordinates of the lunar retroreflectors. The results show that, when used as input for the program, the adjusted retroreflector coordinates improve the validation accuracy by approximately 0.5 cm.

     

/

返回文章
返回