高级检索
孙一勇, 郑鹤鸣, 翟光, 李杰, 王妍欣. 小天体柔性着陆器姿轨耦合智能控制[J]. 深空探测学报(中英文), 2024, 11(3): 265-273. DOI: 10.15982/j.issn.2096-9287.2024.20230171
引用本文: 孙一勇, 郑鹤鸣, 翟光, 李杰, 王妍欣. 小天体柔性着陆器姿轨耦合智能控制[J]. 深空探测学报(中英文), 2024, 11(3): 265-273. DOI: 10.15982/j.issn.2096-9287.2024.20230171
SUN Yiyong, ZHENG Heming, ZHAI Guang, LI Jie, WANG Yanxin. Attitude-Orbit Coupling Intelligent Control of Flexible Asteroid Lander[J]. Journal of Deep Space Exploration, 2024, 11(3): 265-273. DOI: 10.15982/j.issn.2096-9287.2024.20230171
Citation: SUN Yiyong, ZHENG Heming, ZHAI Guang, LI Jie, WANG Yanxin. Attitude-Orbit Coupling Intelligent Control of Flexible Asteroid Lander[J]. Journal of Deep Space Exploration, 2024, 11(3): 265-273. DOI: 10.15982/j.issn.2096-9287.2024.20230171

小天体柔性着陆器姿轨耦合智能控制

Attitude-Orbit Coupling Intelligent Control of Flexible Asteroid Lander

  • 摘要: 针对小天体复杂摄动环境以及着陆器柔性变形作用力建模不准确对小天体着陆造成的不利影响,提出一种基于最大熵强化学习的柔性小天体着陆器姿轨耦合智能控制方法。建立考虑柔性变形作用力等效轨道的动力学模型,并采用基准面法表征具有复杂形变特点的柔性着陆器姿态,从而构建用于智能控制器训练的姿轨耦合动力学环境。根据最大熵强化学习理论的软动作−评价(Soft Actor-Critic,SAC)算法,设计了采用深度神经网络架构的姿轨耦合智能控制器,各个推力器通过自适应输出推力,在保持着陆器姿态稳定的同时高精度跟踪导航轨迹。对控制器部署实际任务后的着陆过程进行了仿真,结果表明,与经典的PD控制方法相比,提出的姿轨耦合智能控制方法具有更强的鲁棒性。

     

    Abstract: A method for attitude-orbit coupling intelligent control of flexible lander based on maximum entropy reinforcement learning is proposed in this paper, aiming at solve the adverse effects of the complex perturbation environment and the inaccurate flexible deformation force. Firstly, the orbital dynamics model of the equivalent agent is established by introducing the internal flexible force of the lander. The datum plane method is used to characterize the attitude of the flexible lander with complex deformation. The attitude-orbit coupling dynamic environment of the lander is constructed to train the intelligent controller. Then, an intelligent controller with deep neural network architecture is designed according to the soft actor-critic(SAC)algorithm of maximum entropy reinforcement learning theory. Each thruster can keep the lander attitude stable and track the navigation trajectory with high precision by self-adapting the output thrust. Finally, the landing process with the controller deployed is simulated. The simulation results show that compared with the classic PD control method, the intelligent control method proposed in this paper has stronger robustness.

     

/

返回文章
返回