Abstract:
As solar radiation is an important source of energy received by the surface of the planets in the solar system, accurate modeling of solar radiation on the surface of Ceres is crucial for studying the thermal environment. However, the highly undulating terrain on Ceres makes determining terrain shading coefficients challenging. While the ray tracing method can accurately determine terrain shading coefficients, it is limited by the search radius. In the paper, it examines the effects of seasonal differences, landform types, and study area size on solar radiation simulation, and concludes that a minimum threshold search radius of 74 km is required to determine actual terrain shading. Using this radius, the paper simulates solar radiation over a solar day and finds that the search radius required for accurate shading information varies with time of year and landscape type. Surface faults are most consistently influenced by the search radius, while volcanic landscapes are most significantly influenced. The global solar radiation distribution of Ceres shows a gradual decrease from low to high latitudes. Results improve the theory and method of solar radiation modeling and provide data and theoretical support for future exploration of Ceres.