高级检索
张怡晨, 胡宇鹏, 王泽, 朱长春, 胡绍全, 李思忠. 基于AMTEC的空间核反应堆电源热力学性能分析[J]. 深空探测学报(中英文), 2021, 8(2): 205-212. DOI: 10.15982/j.issn.2096-9287.2020.20200045
引用本文: 张怡晨, 胡宇鹏, 王泽, 朱长春, 胡绍全, 李思忠. 基于AMTEC的空间核反应堆电源热力学性能分析[J]. 深空探测学报(中英文), 2021, 8(2): 205-212. DOI: 10.15982/j.issn.2096-9287.2020.20200045
ZHANG Yichen, HU Yupeng, WANG Ze, ZHU Changchun, HU Shaoquan, LI Sizhong. Thermodynamic Analysis of Space Nuclear Power System Based on AMTEC[J]. Journal of Deep Space Exploration, 2021, 8(2): 205-212. DOI: 10.15982/j.issn.2096-9287.2020.20200045
Citation: ZHANG Yichen, HU Yupeng, WANG Ze, ZHU Changchun, HU Shaoquan, LI Sizhong. Thermodynamic Analysis of Space Nuclear Power System Based on AMTEC[J]. Journal of Deep Space Exploration, 2021, 8(2): 205-212. DOI: 10.15982/j.issn.2096-9287.2020.20200045

基于AMTEC的空间核反应堆电源热力学性能分析

Thermodynamic Analysis of Space Nuclear Power System Based on AMTEC

  • 摘要: 随着深空探测任务不断推进,空间探测器对于动力的需求也在不断提升,基于碱金属热电转换器(Alkali Metal Thermal to Electric Converter,AMTEC)的空间核反应堆电源系统由于其自身优良的特性被广泛关注。基于热力学第一和第二定律,结合空间核反应堆电源系统内部热力过程能量传递特性,建立了电源系统整体热力学分析模型和针对内部反应堆、蒸发器、BASE、冷凝器等6个控制单元的能量传递及㶲分析数学模型,讨论了反应堆堆芯温度和输出电流密度对整个电源系统和内部各控制单元性能的影响规律。仿真研究结果表明:堆芯温度增加,空间核反应堆电源系统输出电功率和㶲效率增加;随着输出电流密度的增大,输出电功率和㶲效率先增大后降低,出现最大值;不同的堆芯温度对应了使系统性能最优的输出电流密度;经过对比分析各控制单元㶲损失的影响规律,发现㶲损失较大的部件为冷凝器和蒸发器。可为空间核反应堆电源系统设计和优化提供前期理论支撑。

     

    Abstract: With the development of exploration in deep space, the power demanding for space probe is also increasing. Space nuclear power system based on AMTEC has been paid widely attention due to its excellent characteristics. The mathematical model for exergy analysis of space nuclear power system is presented based on the first and second law of thermodynamics. Futhuremore, according to the specific characteristics of thermal process in the space nuclear power system, the thermal system was divided into six control volumes. The effects of core temperature and electrode current density on the output power and exergy efficiency of total system and six control volume have been studied. And the results can provided guidance for designing and optimizing system performance. The result shows that the increasing of the core temperature shows a positive impact on the output power and exergy efficiency. With the increasing of electrode current density, the output power and exergy efficiency increases first and then decreases, and each core temperature corresponds to an electrode current density where the output power and exergy efficiency are maximum. The largest part of exergy loss is found to be condenser and evaporator through the comparative analysis.

     

/

返回文章
返回