Abstract:
Based on the delay and delay rate data from Very Long Baseline Interferometry(VLBI) and range and Doppler data from United S or X band system, the precise point positioning in real-time mode is got and the lunar lander or rover in quasi- real time mode with joint statistical method is obtained. With the precise point positioning method, free of various mechanical constraint, the three-dimensioned position information in real-time can be obtained. In special orbit maneuvering period such as braking at perilune and CE-4 relay satellite entering the Halo orbit at the Lagrangian translation point L2 of Earth-lunar system, the six-orbit elements at real time can be obtained as well, offering a rapid reference for the project. Using the joint statistical method and lunar height constraint, the position of CE-3 lander arrives at 100- meter external coincidence accuracy. With VLBI Same Beam Interferometry(SBI) phase-delay measurements, the external coincidence accuracy of the CE-3 rover reached at 1- meter level. It will promote more positioning analysis in the future deep space exploration projects.