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Fig. 10 Temporal variation of the lunar radiation environment within the first two lunar days after Landing of Chang’E-4""
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The Solar Wind and Particle Radiation Environment on the Surface of the

Moon—New Observations from Chang’E-4

WANG Chi', LILei', ZHANG Aibing”’, ZHANG Shenyi”’, HOU Donghui’, XU Zigong',
XIE Lianghai', WANG Huizi’, LUO Pengwei’, GUO Jingnan', SHI Quangi’, ZHANG Xiaoping’

(1. State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy Sciences, Beijing 100190, China;
2. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. University of Science and Technology of China, Hefei 230026, China;
5. School of Space Science and Physics, Shandong University, Weihai 264209, China;
6. Macau University of Science and Technology, Macao 999078, China)

Abstract: The solar wind, solar energetic particles and the galactic cosmic rays can reach the Moon almost unhindered, and

interact with the lunar surface. The solar wind is partly scattered by the lunar regolith as hydrogen energetic neutral atoms, and the

solar wind can also sputter heavy energetic neutral atoms out of the lunar regolith as well. While the albedo radiation, resulting from

impact of the solar energetic particles and the galactic cosmic rays on the lunar regolith, are mainly composed of neutrons and

gamma rays, features of the lunar surface radiation environment. The first ever in situ measurements of energetic neutral atoms and

particle radiation have been carried out by Chang’E-4 on the lunar farside. Results reveal that a mini-magnetosphere is formed in the

vicinity of the Moon, suggesting ENA is a new perspective to study the solar wind - Moon interaction. While the radiation

measurements provide valuable information to guarantee the health of future robotic or manned missions to the Moon.

Keywords: lunar space environment; energetic neutral atom; solar wind scattering; particle radiation; mini-magnetosphere
Highlights:

e Chang’E-4 carried out first time in situ measurements of ENA and particle ration environment on the lunar surface

e Observations reveal that low energy (<100 eV) ENA has high flux; while 100 - 600 eV ENA flux exhibits linear correlation with
the solar wind parameters. Thus reduced ENA flux in the afternoon section (lunar local time) suggests the surface might be partly
shielded by the mini-magnetosphere formed over the Imbrium antipodal magnetic anomalies. The solar wind penetration into the mini-
magnetosphere depends on the inertial length of solar wind protons.

e The lunar surface radiation parameters and their variations over time are measured, supplying valuable information for lunar
surface mission design. The lunar surface does not affect the galactic ray spectrum under quiet solar conditions, while the neutral
components, resulting from galactic ray and solar energetic particle interaction with the lunar regolith, contributes ~23 % to the lunar

surface radiation.

et &%, EXFhe 205


http://dx.doi.org/10.3847/2041-8213/abbccc
http://dx.doi.org/10.3847/2041-8213/abbccc
http://dx.doi.org/10.3847/2041-8213/abbccc
http://dx.doi.org/10.3847/2041-8213/abbccc
http://dx.doi.org/10.3847/2041-8213/abbccc
http://dx.doi.org/10.3847/2041-8213/abbccc
http://dx.doi.org/10.3847/2041-8213/abbccc
http://dx.doi.org/10.3847/2041-8213/abbccc

	引　言
	1 月表太阳风ENA观测
	1.1 中性原子探测仪（ASAN）
	1.2 月表ENA的观测结果
	1.3 ENA观测发现月球微磁层的证据
	1.4 微磁层的特性

	2 月表粒子辐射环境
	2.1 月表中子与辐射剂量探测仪（LND）
	2.2 着陆器放射源的干扰校正
	2.3 月表辐射环境观测
	2.4 对太阳高能粒子事件的观测

	3 结束语

