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Mission Analysis and Design of Half-Ballistic Reentry for Deep Space Exploration

CHEN Chunliang', ZHANG Zhengfeng', SHENG Ruiging', YANG Mengfei’

(1. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China;
2. China Academy of Space Technology, Beijing 100094, China)

Abstract: Half-ballistic reentry is one of the key links of deep space exploration mission. It is characterized by many key
technologies, many design constrains, and difficulties in experimental verification. According to the idea of System Engineering,
aiming at the re-entry and return mission of "Chang'E-5", the design of constraints, reentry corridor, aerodynamic shape and re-
entry trajectory is carried out, the relationship between various design elements is clarified, and the design scheme of "Chang'E-5"
re-entry system is put forward, and the reentry and return flight procedure and the design of key tasks are also described in this
paper. After the actual flight of the reentry vehicle in orbit, it shows that the analysis and design idea of the reentry mission is
accurate , which lays the foundation for the subsequent deep space reentry mission.

Keywords: deep space exploration; half-ballistic; return and reentry; Chang’E-5; system design

Highlights:

e A design process and method of the half-ballistic reentry mission for deep space exploration mission is proposed.

e From the system level, the key links of deep space half-ballistic reentry mission are analyzed, and the analysis results with

strong universality are obtained.

e The design scheme of the first high-speed reentry mission in China and the flight results in orbit are described systematically.

[FAE% 4. Mk, FELFR: 3 F]



	引　言
	1 深空探测跳跃式再入返回技术特点
	2 跳跃式再入返回任务分析
	2.1 再入返回任务分析流程
	2.2 再入返回约束条件分析
	2.3 气动外形设计与分析
	2.4 再入走廊分析
	2.5 再入返回弹道设计
	2.6 功能任务及要求分析

	3 返回器系统设计
	3.1 系统组成设计
	3.2 再入返回飞行程序设计
	3.3 构型布局设计
	3.4 关键任务环节设计

	4 探月三期返回器在轨飞行结果
	5 结　论

