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Fig. 1 The schematic diagram of Mars pinpoint landing

X REENET R S, H AT CSERE K
ARG HCR M TR R 0 2 3 O U R E T %, H
M7 RAFLERT IR Tk R AN E L 5
BURIE S W AT 55 5 SRSk i 10 A7 ATk
BIGIL 258 B AR B I B 32 SR RIS 73 B R A
KEICARFR S, FHRE A~10km) +2HR,
T R R SR R

TR E AR B S HAr 2
e TR 3 AT DA 00 B 00 3 £ I 5 4 1) LT
2o (A AR B R A S IEE N R ALAR SR 5T
KT AL E R B IR R, XA 7% R Bl 20 A
WlHE 2 R AN K (km B ERIIMESS #5R, 3
LA AL A M s 5 A 55 1 7 2

% F& B K BRI o0 A B KRR I WA 5T
HA SRS B ARBEAR, X ORI ] CORRFIE R AR 2EAT
TR T ATRE . PRI SR ISR AR, KRR
T 28 K 7 i s 5 A A0 a7 BB A5 JE 98 A A e A R 3R
B 3R 4E B AR R AR R DSBS, BT BAFERE N i
ARERENE A AR R B R S T B S BT

RFALE i B P PR UM, 30 T i S B ol e PR R 55
5 RN R T A 0.

EEXPRARBENATI kG FE B E SRR, IR
FH Tl R X2 ok v B2 Rk L 2 T o s R4 P 25
HESHT %R, B0 KR EDL i F2 (1 780k i 465 Al
X FHFR, FH T — TR ER . IMU R
MPEMEAE B 25 EMAEEHAEENTR, #
w7 O bl R VEARAE KA B Bk
B, SEELT SEAA L E S RIRE . B HE AU IR
UG SR HFR R, RS T HArB P24
1B TR PUE B IE SN B KRN R 1
R 45 ) 5 0K, SR 2 BR FRBI0ZE 1) T A OF
S, i E T R BRI RN ) 2R RO 2R B AN R
RE . BT RS FE B A g e S 4 1 R R
P T TR B EAR BR B R RS B AR S KT
PEH 75 A HE NG Bl AT 5% i R 1 228 A 4 ) TR
F PID+PWM #5 1]110],
12 RZEESHITRIZ

BEXT K B 58 RUE TS B R B SRR,



350

DR TRI 4R

2019 4F

o el R 5% 75 P BRI T USSR
R BBURR R AT X 2 ik b AU S DL B 2 1T T i)
SHERBBURE . 9 T RIE R G TUAR A RS
ok, BRI ES TEDRE2E, A8 E 3N IE
AL LRI INE FETH A 3 AN IEAZ 24 i BB IR s R UK
WIE. FMBBURE 2 & XLk EBURSE 1
G Hrp, BENERT AMU) . EHURSEEY
PG BURER R, JFICE T R L R shR A
BUR, T RSFEIE AR — AL T AR AR . — IR 2

BURA A G T BRBURE . e F R BUR S . IMU FI
RPN B TRE, TR AN AL TR B A 1
S a, BEX A ERRESLIRERRE ), HEM
ST B AR IRRE S, T R A R S ML BN K
o EENT KB E RUE AT S I moRs BEAE I T R, H R
PRI 25 75 e B 2 08 0t 0 F T LS MK R il
AR A T BB ) E R BIL. BT KR E B AT
FZWER, S MR35 7 HMHd GNC RE 4
K8, B E 3 GNC RS 4590 2 Fis o

\ ]
e N L
BHBRS
el B \§§§§§§§§\‘Q5<5\\ )
RN TR R EREHL
e RHE T IS BE [ e H RS
S \iigiis\%ﬁﬁ
s SIS N
- b P T 5 B
RIRILRR T M R e A
e R B =
G
EERMU S {__%%géié__jgﬁu: AT
MU+ EE | ATHLH
RO | | JREE R g ramenm ¢

B2 JORKEIE R R SS H O GNC REE45H

Fig.2 The autonomous GNC system architecture for Mars pinpoint landing mission
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Fig.3 The algorithm flow diagram of landmark image process
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Fig. 14 The hazard avoidance results during Mars landing phase
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Research of Autonomous Navigation and Control Scheme Based on
Multi-Information Fusion for Mars Pinpoint Landing

HUANG Xiangyu'?, XU Chao'?, HU Ronghai'?, LI Maodeng'?, GUO Minwen'?, HU Jinchang'~

(1. Beijing Institute of Control Engineering, Beijing 100094, China;
2. Science and Technology on Space Intelligent Control Laboratory, Beijing 100094, China)

Abstract: An autonomous guidance, navigation and control (GNC) scheme based on multi-information fusion is proposed
for Mars pinpoint landing mission. Before entering the Mars atmosphere, an autonomous navigation scheme fusing X-Ray pulsars
and Mars landmark images is employed to satisfy the requirement of high precision navigation. Then, during Mars entry, descent
and landing (EDL) phase, a multi-information fusion navigation scheme is constructed for absolute and relative navigation with
high precision, which consists of Mars landmark images, inertial measurement unit (IMU) and ranging and velocity sensors.
With the demands of pinpoint landing, a guidance and control algorithm is also designed for Mars atmosphere entry phase and
powered descent phase. Finally, numerical simulation is performed, which indicates that the landing accuracy is better than 100 m
and the hazard avoidance accuracy is around 0.5 m when adopting the proposed GNC scheme.

Key words: pinpoint landing; autonomous navigation; information fusion; GNC scheme

High lights:

® AGNCscheme is constructed for Mars pinpoint landing.

® A multi-information fusion navigation is established for Mars EDL phase.

® A guidance and control algorithm is designed for Mars atmosphere entry and powered descent phase.

® The proposed GNC scheme achieves the landing accuracy with 17.6 m and the hazard avoidance accuracy with 0.46 m.
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