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Fig. 2 The acquisition of solar oscillation time delay measurement
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Fig. 3 Measurement model of solar oscillation time delay
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A Novel Autonomous Celestial Navigation Method Using Solar
Oscillation Time Delay Measurement

NING Xiaolin', GUI Mingzhen', SUN Xiaohan', LIU Jin’, WU Weiren’

(1. School of Instrument Science &Opto-electronics Engineering, Beihang University, Beijing 100191, China;
2. School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
3. Lunar Exploration and Space Program Center, Beijing 100191, China)

Abstract: Solar oscillation, causing a dramatic variation of the sunlight spectral central wavelengths and intensity during a
short time, has been studied in detail over the years, both observationally and theoretically. Through detecting the sunlight spectral
central wavelengths and intensity and recording the moment when solar oscillation occurs, the time delay between the sunlight
coming from the Sun directly and the sunlight reflected by a celestial body such as the satellite of planet or asteroid can be obtained.
Because the solar oscillation time delay is determined by the relative positions of the spacecraft, reflective celestial body and the
Sun, it can be adopted as the navigation measurement to provide the spacecraft's position information. In this paper, a novel
celestial navigation method using solar oscillation time delay measurement is proposed. The implicit measurement model of time
delay is built, and the Implicit Unscented Kalman Filter (IUKF) is applied. Simulation results indicate that the position error and
velocity error of the proposed method for the transfer orbit are about 3.55 km and 0.077 m/s respectively, and for the surrounding
orbit are about 1.76 km and 1.57 m/s respectively. The impact of the three factors on the navigation performance is also investigated.

Key words: autonomous navigation; celestial navigation; solar oscillation; time delay; implicit UKF

High lights:

e A celestial navigation method using solar oscillation time delay measurement is proposed.

e The procedure for calculating the implicit measurement is given.

e The celestial navigation system using solar oscillation time delay measurement is designed.
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