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Fig. 2 The invariant manifolds of halo orbits in the Sun-Earth system
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Fig. 3 The process of a cubesat transfering from the Earth parking orbit to the target asteroid
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Low-Cost and Multi-Objective Asteroid Transfer Trajectory Design

WANG Peng"*’, WU Xiaoyu”’, ZHANG Lihua'

(1. DFH Satellite Co., Ltd., Beijing 100094, China;
2. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
3. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing100081, China)

Abstract: To reduce the total cost and risk of asteroid exploration, it is necessary to select multi-objective to avoid the
disadvantages such as single target, high-cost and long-period. In this paper, a multi-target transfer trajectory design method is
proposed based on the cubesats with the cooperation of gravity flyby and invariant manifolds. Introduced by the perturbation
invariant manifolds, the cubesat can rapidly transfer to the target and carry out a global launch chance searching for asgteroids based
on the Sun-Earth Halo parking orbit and determine the next target. The results indicated that the proposed method is able to
significantly reduce the fuel consumption of trajectory transfer as well as transfer time.

Key words: asteroid exploration; multi-objective transfer; invariant manifold; gravity flyby

High lights:

e A multi-objective transfer trajectory strategy is proposed which significantly reduces the mission cost.

e The low-energy transfer trajectory is constructed based on the mechanism of invariant manifolds and gravity flyby to construct.

e The perturbation invariant manifolds is introduced in this paper to reduce the transfer time by adding the velocity increment to the
periodic orbit and their manifolds.
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