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Fig. 1 “Delivery” flight mission assumption
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Fig.2 “Sentry” flight mission assumption
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Fig. 3 “Formation flight”flight mission assumption
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Table 1 Dynamic simulation analysis initial conditions
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Fig. 6 Dynamic response of rotational speed in different environment
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A Preliminary Discussion on the Proposal and Feasibility of Atmospheric Planet

Suspension Exploration

XING Zhuoyi, MA Yuwei, ZHU Shunjie, BAI Chongyan

(Beijing Institute of Spacecraft System Engineering, Beijing 100094, China)

Abstract: At present, the large-scalemaneuver capability of space probes in orbiting exploration, landing exploration,
exploration with rovers and sampling and return back to Earth, is greatly constrained by landform features and topography
conditions. The Suspension exploration is a newly developed method for exploration mission on the planets with atmosphere. By
“flight” maneuver, the probes can take full advantage of planetary atmosphere to collect more scientific exploration data. By
Suspension exploration, the maneuver defects of probes can be overcame. In this paper, the concepts of a Suspension probe and its
working modes are proposed. A six-degree dynamic model of the probe is set up. Together with the careful study on the environment
of the planets with atmosphere in solar system, the dynamic characteristics of the Suspension probe are demonstrated and its
exploration targets are listed out. Based on these study results, the evaluation coefficient of feasibility (ECoF) of the Suspension
probe is proposed for the first time, thus to lay out theoretical foundation for the feasibility study on the application of Suspension
probes in deep space exploration.

Key words: Suspension exploration; planet with atmosphere; feasibility; dynamics model

High lights:

e By suspension exploration, Large range of maneuvering position detection can be realized.

e The suspension exploration is a newly developed method for exploration mission on planets with atmosphere.

e The evaluation coefficient of feasibility (ECoF) of Suspension probe is proposed for the first time.
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