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Table 1 The relations between the amplitudes of halo orbits
and the tracking laws

PRIF/km WL (%)
1000 5.45
2000 4.67
3000 291
4000 0
5000 0
10 000 0
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Fig. 5 Percentage of time over the southern hemisphere for southern family
halo orbits
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Table 2 The constraint of transfer orbit
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Table 3 The results of transfer orbit with different amplitudes of halo orbit (flyby height: 100 km)

PRIEAz/km A F A I A]/d EFEHEN (ms™) TG A I [8]/d NBHLEN/ (ms BALEN (mes™
3000 5.007 187.090 12.783 26.509 213.599
6 000 5.612 208.105 14.155 18.844 226.949
9000 5.751 210.917 14343 47.876 258.793
12 000 5.722 215.542 14.521 67.764 283.306
15 000 5.604 223.596 14.691 82.287 305.883
#=4 AEHEASEEhalofliBFBLER (HRIE3 000 km)

Table 4 The results of transfer orbit with different flyby heights (amplitudes of halo orbit: 3 000 km)

I H s /km o FeRE R TA)/d HFHLEN/ (mes™ L FERE S 1A)/d ABHLEY (m-s") BHLEY (ms"
100 5.007 187.090 12.783 26.509 213.599
300 5.032 211.145 12.868 28.972 240.117
500 4.890 228.674 12.943 31.263 259.937
1000 4.631 260.330 13.066 30.927 291.257
2000 4.346 313.172 13.149 24.448 337.620
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Fig. 9 The distribution diagram of transfer orbit injection point
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