微阴极电弧推力器研究进展

耿金越¹, 熊子昌², 龙军¹, 沈岩¹, 刘旭辉¹, 陈君¹ (1. 北京控制工程研究所, 北京 100094; 2. 北京航空航天大学 宇航学院, 北京 100191)

摘 要: 介绍一种适用于微纳卫星的新型微电推进方式——微阴极电弧推力器,其利用真空条件下放电电弧烧蚀阴极 材料产生较高电离度的高速等离子体喷出产生推力,并利用外加磁场聚焦等离子体以减小羽流扩散角、提高比冲。总结了 国外相关机构大量的研究工作,并实现了在轨验证。北京控制工程研究所及其研究团队已攻克了阴极工质均匀烧蚀、低电 压放电击穿、磁场设计等关键技术,完成原理样机点火验证工作,并采用实验手段研究磁场对推力器影响;采用 PIC/MCC方法开展数值仿真,获得推力器内部及羽流区相关参数分布,对其工作过程及工作机理开展研究,为工程应用奠 定了基础。

关键词:微阴极电弧推力器;研究进展;试验测试;数值仿真

中图分类号: V439+.4 文献标识码: A 文章编号: 2095-7777(2017)03-0212-07 **DOI:**10.15982/j.issn.2095-7777.2017.03.002

引用格式: 耿金越, 熊子昌, 龙军, 等. 微阴极电弧推力器研究进展[J]. 深空探测学报, 2017, 4(3): 212-218, 231.

Reference format: Geng J Y, Xiong Z C, Long J, et al. The research progress in the micro-cathode arc thruster[J]. Journal of Deep Space Exploration, 2017, 4 (3) : 212-218, 231.

0 引 言

微阴极电弧推力器(Micro-Cathode Arc Thruster, μCAT)^[13]是由美国乔治华盛顿大学(George Washington University)近年来研制的一种新型推力器,其利用真 空条件下放电电弧烧蚀阴极材料产生较高电离度的高 速等离子体,并利用外加磁场聚焦等离子体以产生推 力。μCAT具有总冲较高、元冲量较小、系统质量较 低、系统体积较小、造价低廉等优点。此外,该推进 模块结构简单紧凑,易于实现模块化,可发展为即插 即用部组件;并且该推进模块中使用的绝大部分零件 可直接采购或加工难度较低,易于批量化生成,能够 满足微小卫星对推进模块的需求。

典型的环型微阴极电弧推力器如图 1所示,主要 包括阳极、阴极、电极间的陶瓷绝缘层和同轴的外磁 线圈等。为了便于研究可以人为地将整个工作过程分 为两个阶段:首先,脉冲放电的真空电弧在阴极表面 收缩成电流密度很高且在磁场作用下不断运动的阴极 斑点,烧蚀阴极材料形成较高电离度的高速等离子 体;随后,高度电离的等离子体在多物理场耦合作用 下加速喷出,产生推力。由于μCAT采用金属阴极作为 推进剂,使其效率较特氟龙作为推进剂的传统脉冲等 离子体推力器(Pulsed Plasma Thruster, PPT)有较大 提高^[2];在加速的过程中外部磁场提高了等离子体轴向 速度、减小了羽流发散角、提高了推力器比冲(比冲 最高可达3 000 s以上),μCAT是极具发展前景的微型 电推进技术之一。

由于微阴极电弧推力器在各方面体现出的明显优势,已被美国选中作为微纳卫星姿轨控的推进方案之

收稿日期: 2017-03-30 修回日期: 2017-05-20 基金项目: 载人航天预研支持项目(050303)

一,并在2015年5月将集成了4个μCAT的BRICSat-P星 (1.5 U立方体卫星,NO 83/Navy-OSCAR 83)搭载 "阿特拉斯5号"(Atlas-5)火箭发射升空,开展了在轨 验证工作^[4],并完成了消旋任务。

本文首先介绍国外在基础理论、样机研制及数值 仿真等方面的研究情况,分析了微阴极电弧推力器的 关键技术,并在此基础上开展推力器的研制工作及数 值仿真研究,分析微阴极电弧推力器内等离子体的加 速过程。

1 国外研究现状

1.1 基础理论研究

微阴极电弧推力器的基础理论涉及真空电弧、电 磁加速和等离子体等多方面理论。前人主要研究了阴 极电弧推力产生机理及其等离子体特性。

阴极电弧现象及其电推进应用可行性是最早开展的研究领域。早在1930年,Plyutto^[5]就对真空中铜阴极 产生的等离子体及大粒子进行了观察,并发现高速等 离子体流产生了可观的推力。同时,Gilmour^[6]还研究 了真空电弧稳定性,并发现:在放电过程中,阴极材 料在垂直于阴极表面的方向有所损耗,等离子体密度 在此方向上呈最大的余弦分布,大粒子多停留在阴极 表面且数量与阴极材料及电流密切相关。Gilmour^[7]研 究了将阴极电弧应用于电推进的可行性。研究发现: 由于阴极材料的气化及电离会产生一条导电路径,从 而实现真空电弧;使用外加磁场可以提高推力器产生 的推力。

阴极电弧等离子体特性研究有助于人们深入了解 阴极电弧及其推力产生机理。Plyutto测试并分析了所 产生的等离子体典型参数。Gilmour也对真空电弧的某 些等离子体特征参数进行了研究,并且发现:①当材 料及工作条件一定时, 阴极的消耗率是常数; ②真空 电弧的阴极炽点是由离散点组成,每个点表示小范围 电流的产生,不同的材料拥有不同的电流激发阈值, 但沸点较高的材料可能不表现离散点特性; ③炽点和 电弧有一定随机性,且持续时间有限。阴极炽点附近 压强、电流及温度梯度很高。Dorodnov^[8]讨论了真空电 弧中烧蚀率及等离子体团的性质。Anders^[9-10]研究了点 火电极与阴极间产生的"高压闪络"过程。Niansheng Qi^[11-13]通过实验研究了真空电弧的性质,认为从阴极炽 点发射出的等离子体羽流速度达10 000~30 000 m/s的 速度,并且离子通常为1~3价电离状态。实验中的电 弧电流、脉冲宽度及频率均可调。此外,Niansheng Oi^[14]分析了样机(不含外加磁场)的电场加速、大粒 子碰撞和电子离子碰撞等多种加速机制,电子电离碰 撞所起的作用最大。

由此可见,研究人员对真空电弧等离子体产生、 性质和加速等过程研究较多,但对阴极烧蚀理论关注 不够。阴极烧蚀特性决定了推力器材料消耗及初始状态,直接影响微阴极电弧推力器性能和寿命,是微阴 极电弧推力器理论基础研究的重要部分。

1.2 样机研制

微阴极电弧推力器是基于真空电弧的脉冲式微型电 推力器,其工作原理见图 2。在电源处理单元(Power Processing Unit, PPU)方面采用电感储能电路,通过 绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor, IGBT)的快速开关在电极上施加较高的电压,使得电 极间发生击穿放电;此外推力器方面,除了改进机械 结构外,还通过施加专门设计的外加磁场提高推力器 比冲,降低羽流发散角。

图 2 微阴极电弧推力器控制电路及储能机构示意图 Fig. 2 Illustration of control circuit and energy storage module for the µCAT

Michael Keidar研究团队在2010年前后对微阴极电 弧推力器进行了深入研究,大大推进了微阴极电弧推 力器工程化的研究水平^[14, 15-21]。Michael Keidar比较了 多种电推进微推力器的性能,研制了微阴极电弧推力 器样机,并建立了微阴极电弧推力器测试系统。 Michael Keidar、Taisen Zhuang及其研究团队研制了适 用于微阴极电弧推力器的推力测试台(如图 3所 示),并使用多个探针测试了不同磁场强度下的离子 时空分布情况,使用CCD及同心圆形探针测试了微阴 极电弧推力器的羽流(如图 4所示),并研究了外加 磁场对推力器性能的影响(如图 5所示)。Patrick Vail测试了微阴极电弧推力器的元冲量,并计算了样 机的效率。Dereck Chiu研制了使用两种阴极材料的双 模式微阴极电弧推力器,并测试了其相关性能。

Taisen Zhuang还对微阴极电弧推力器作为矢量控制方式进行了设计,通过采用3个磁线圈,即在微阴极电弧推力器外增加3个不同轴的磁线圈(如图 6所示)。采用这种设计,当只有一个励磁线圈工作时可以使得微阴极电弧推力器具有3个方向的矢量控制作用,但是当3个励磁线圈以一定的方式同时供电工作时

微阴极电弧推力器则可以提供360°的矢量控制,这对 于微阴极电弧推力器如此小的推力器来说极具吸引力。 此外,通过控制励磁线圈中励磁电流的大小,还可以 调节微阴极电弧推力器矢量控制时推力偏转的角度。

(b) 微推力测试台实物图

图 3 微推力测试台 Fig. 3 Micro thrust bed test

(a) 平板探针

(a) 有磁场时磁场阴极电弧推力器羽流图

(b) 无磁场时微阴极电弧推力器羽流图

图 5 外加磁场对微阴极电弧推力器羽流对比 Fig. 5 Comparison of external magnetic fields on the μCAT plume

图 6 矢量控制的微阴极电弧推力器示意图 Fig. 6 Illustration of the vector control for the μCAT

1.3 数值仿真研究

关于微阴极电弧推力器仿真研究的文献较少。 Lubos Brieda^[23]使用Starfish仿真代码模拟了二维微阴极 电弧推力器流场,其中入口条件由实验测得。虽然仍 存在一些待解决的问题,但计算结果反映了一定趋 势,可为样机小型化提供帮助。Thomas Andrew Denz 通过外加固定磁场研究了不同的磁场分布,主要包括 不同磁芯位置、电磁线圈数量及曲率对推力器的影 响。Taisen Zhuang使用FEMM磁场模拟软件模拟了非 均匀磁场的分布情况(如图7所示)。

由图 7可见,微阴极电弧推力器仿真研究尚处于 初步阶段。模型多依赖实验结果,且未能实现推力器 整个工作过程仿真。开展相关方面的研究将有助于进 一步理解推力器内部等离子体加速过程, 缩短工程样 机的研制周期, 并有效提高推力器性能。

1.3 国外研究及制约微阴极电弧推力发展的关键技术 小结

国外针对微阴极电弧推力器进行了大量的研究, 已经突破了多项关键技术,完成了工程样机研制,且 美国实现了初步的在轨验证工作。现将制约微阴极电 弧推力器工程化的关键技术予以总结。

1.3.1 阴极电弧烧蚀理论

阴极作为微阴极电弧推力器的电极和推进剂,直 接决定了微阴极电弧推力器的烧蚀过程,并会对推力 器性能和寿命产生了至关重要的影响。为提高推力器 性能,研究人员通过实验研究了钛、镁、铜、锂等多 种材料作为阴极的烧蚀情况,并考虑了多种材料混合 应用以提高推力器性能。但由于缺乏恰当的阴极材料 热物性模型和数据,无法从理论角度阐释阴极烧蚀对 推力器性能的影响。此外,阴极烧蚀也与推力器寿命 密切相关。一方面,阴极消耗会决定推力器的寿命; 另一方面,阴极构型的不规则烧蚀以及长时间工作电 性能退化引起的烧蚀变化,也对推力器寿命有着不可 忽略的影响。

然而,直接通过材料烧蚀试验开展阴极材料烧蚀 研究较为困难。目前的烧蚀试验总体上尚处于宏观量 测量水平,并且测量误差较大。绝大多数烧蚀实验通 过测量多次点火平均烧蚀质量获得平均烧蚀率,但仪 器精度和推力器重复性等因素会大大影响测量结果的 准确性。

因此, 阴极烧蚀理论研究对于推力器工程化研究 至关重要, 需要大力推进相关的理论和数值仿真研究。 1.3.2 工作过程模拟

微阴极电弧推力器工作过程极其复杂,涉及到 热、电、磁等多种物理场的相互耦合,需要建立准确 的模型模拟推力器工作机理。 从目前的国外研究状况看,微阴极电弧推力器的 数值模拟需要提供实验结果作为输入参数,例如烧蚀 质量和电流等参数需要实验确定再代入到仿真模型 中,这样的仿真无法为设计提供全面支持。因此需要 借助烧蚀理论研究建立,并借助等离子体理论获得等 离子体电参数建立电路模型,建立包括烧蚀模型和电 路模型在内的完整数值模拟模型才能对整个推力器工 作过程进行仿真,为样机研制及优化提供指导。

1.3.3 微推力测试

微阴极电弧推力器的元冲量测量是测试系统的难 点。微阴极电弧推力器的元冲量为μNs量级,而目前常 见微推力测试装置只能测量几十μNs量级,尚无法满足 微阴极电弧推力器的元冲量测试需求。在测量如此小 冲量的同时,微推力测量装置还需要具有一定的抗干 扰能力。试验时真空机组运转会产生机械振动;推力 工作时也存在电磁干扰。这些均会影响微推力测量装 置的有效输出。因此微推力测试技术是研制微阴极电 弧推力器的关键技术之一。

2 国内产品研制及试验研究

北京控制工程研究所于2014年开始关注µCAT的研究,并开展了预先研究工作^[23-25],先后完成了方案设计,攻克了阴极工质均匀烧蚀、低电压放电击穿、磁场设计等关键技术,并完成了原理样机验证工作。现已完成环型和同轴型两种µCAT。

图 8为北京控制工程研究所研制的μCAT样机(包括PPU模块和推力器头部)。其中PPU模块尺寸为100 mm×100 mm×30 mm(0.3 U),通过电感线圈和IGBT快速开关,实现了从5~28 V的供电电压起,瞬间升至800 V以上的能力,保证了推力器能够可靠击穿放电工作;推力器头部主要由阴极、阳极、陶瓷绝缘环及弹簧和外壳组成:①综合考虑烧蚀速率、效率及粒子发射速度等因素,阴极选用金属钛;②考虑到导电性、导热性及避免阳极烧蚀,阳极材料采用金属铜;③为了实现低电压放电击穿,在陶瓷表面镀上了一层导电薄膜,提供放电初期的背景粒子。

图 9为样机点火照片,可以看到明亮的阴极弧 斑,烧蚀后形成的阴极斑点见图 10。图 11为阴极斑点 烧蚀过程中的放电电压变化曲线,工作过程中首先 IGBT导通,进行电感线圈充电储能,随着IGBT的快速 断开,在微阴极电弧推力器的阴极和阳极之间产生数 百伏的高压,完成了击穿放电,阴极斑点烧蚀阴极产 生的等离子体承载着电极间的电流,随着高速等离子 体喷出,一次放电过程结束,而电感两端再次产生反 电动势,形成第二个较低的高电压峰。

216

(a) PPU 模块

(b) 推力器头部

图 8 μCAT样机 Fig. 8 Prototype of the µCAT

图 9 uCAT点火照片 Fig. 9 Picture of the µCAT lighting

图 10 阴极烧蚀斑点 Fig. 10 Cathode ablation spots

Fig. 11 The discharge voltage

此外,还采用TOF方法用双法拉第简通过实验测 量方法研究了磁场对微阴极电弧推力器工作的影响, 改变磁感应强度的大小获得各磁感应强度下等离子体 的速度,随着磁场强度增加等离子体速度增大,测量 结果如图 12所示。

图 12 不同磁场下等离子体速度 Fig. 12 Plasma velocity under different magnetic fields

国内数值仿真研究 3

北京控制工程研究所与相关合作单位还采用PIC/ MCC方法开展了µCAT推力器通道内及羽流区等离子 体加速机制的初步仿真工作[25]。首先针对乔治华盛顿 大学研制的环型µCAT推力器进行仿真(部分结果见 图 13~15),并与文献[22]报道结果进行了对比,结 果趋势、等离子体参数量级基本一致,验证了本项目 拟采用的模型和方法的可行性。

图 13 计算域内离子数密度分布 Fig. 13 Distribution of ion number density in the simulation domain

图 14 计算域内电子数密度分布 Fig. 14 Distribution of electron number density in the simulation domain

图 15 计算域内电势分布 Fig. 15 Distribution of potential in the simulation domain

采用PIC/MCC方法对自研的同轴型μCAT进行数值 仿真(部分结果见图16~19),通过模拟可知,离子 在阴极表面形成局部高电势的虚阳极;电子被磁化, 被牢牢地束缚在磁感线的周围,形成局部低电势通 道;使得离子会沿此通道加速定向喷出,可以观察到 明显的沿磁感线的离子主流区。

4 结 论

微阴极电弧推力器具有体积小、重量轻、比冲较 高、结构简单紧凑、易于实现模块化等优点,已被美 国选中作为微纳卫星姿轨控的推进方案之一,并开展 了在轨验证工作。

国外针对微阴极电弧推力器开展了基础理论研 究、样机研制和数值仿真研究等大量的研究工作。本 文针对国外研究进展总结出制约其工程化的关键技术 包括阴极电弧烧蚀理论、工作过程仿真分析及微推力 测试等。

北京控制工程研究所及相关研究团队已研制了环 型和同轴型两种μCAT,并进行了相关关键技术攻关和 原理验证工作,获得推力器工作过程的电参数变化情 况,还采用实验方法研究了不同磁场对推力器的影 响,随磁场增强等离子体速度增大;针对μCAT内高度 电离的等离子体在多物理场耦合作用的加速过程采用 PIC/MCC方法进行数值仿真,获得了电子数密度分 布、离子数密度分布、电势分布等参数,通过模拟结 果可知,电子被磁化并牢牢地束缚在磁感线的周围, 形成局部低电势通道,使得离子会沿此通道加速定向 喷出,可以观察到明显的沿磁感线的离子主流区。

参考文献

- Zhuang T, Shashurin A, Denz T, et al. Performance characteristics of micro-cathode arc thruster[J]. Journal of Propulsion and Power, 2014, 30(1):29-34.
- [2] Keidar M, Zhuang T, Shashurin A, et al. Electric propulsion for small satellites[J]. Plasma Physics and Controlled Fusion, 2015, 57(1): 14005-14014.
- [3] Vail P, Pancottiy A. Performance characterization of micro-cathode arc thruster(µCAT)[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego, California: AIAA, 2011.
- US Naval Academy Satellite Lab, George Washington University. BRICSat-P(BRICSat 1/NO83/Naval Academy-OSCAR 83). [EB/OL].
 (2015-05-20) [2017-03-20]. http://space.skyrocket.de/doc_sdat/bricsatp.htm.
- [5] Plyutto A A, Ryzhdov V N, Kapin A T. High speed plasma streams in

vacuum arcs[J]. Soviet Physics JETP, 1965, 20(2): 328-337.

- [6] Gilmour A S. Concerning the feasibility of a vacuum arc thruster[C]//5th Electric Propulsion Conference. San Diego, California: AIAA, 1966.
- [7] Gilmour A S, Clark R J, Veron H. Pulsed vacuum-arc microthrustors [C]//AIAA Electric Propulsion and Plasma Dynamics Conference. Colorado: AIAA, 1967.
- [8] Dorodnov A M. Technical applications of plasma accelerators[J]. Sov. Phys. Tech. Phys., 1978, 23(9): 1858-1870.
- [9] Anders A, MacGill R A, McVeigh T A. Efficient, compact power supply for repetitively pulsed, "triggerless" cathodic arcs[J]. Review of Scientific Instruments, 1999, 70(12):4532-4535.
- [10] Anders A, Schein J, Qi N. Pulsed vacuum-arc ion source operated with a "triggerless" arc initiation method[J]. Review of Scientific Instruments, 2000, 71(2): 827-829.
- [11] Qi N, Schein J, Binder R, et al. Compact vacuum arc micro-thruster for small satellite systems[J]. Pulsed Power Plasma Science, 2013, 98(C6): 588.
- [12] Schein J, Qi N, Binder R, et al. Low mass vacuum arc thruster system for station keeping missions[C]// 27th International Electric Propulsion Conference. Pasadena: California the Electric Rocket Propulsion Society, 2001.
- [13] Schein J, Qi N, Binder R, et al. Inductive energy storage driven vacuum arc thruster[J]. Review of Scientific Instruments, 2002, 73(2):925-927.
- [14] Polk J E, Sekerak M J, Ziemer J K, et al. A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2167-2179.
- [15] Zhuang T, Shashurin A, Chiu D, et al. Micro-cathode arc thruster (μCAT) with thrust vector control[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, Georgia, USA: AIAA, 2012.
- [16] Zhuang T, Shashurin A, Beilis I, et al. Ion velocities in a micro-cathode arc thruster[J]. Physics of Plasmas, 2012, 19(6):661-671.
- [17] Chiu D, Lukas J, Teal G, et al. Development towards a bi-modal microcathode arc thruster(µCAT)[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose, CA: AIAA, 2013.
- [18] Zhuang T, Shashuriny A, Teel G, et al. Co-axial micro-cathode arc thruster(CA-µCAT) performance characterization[C]//47th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego, California: AIAA, 2011.
- [19] Zhuang T, Shashurin A, Keidar M. Micro-cathode thruster(µCT) plume characterization[J]. IEEE Transactions on Plasma Science, 2011, 39(11):2936-2937.

- [20] Zhuang T, Shashurin A, Haque S. Performance characterization of the micro-cathode arc thruster and propulsion system for space applications[J]. Breastfeeding Medicine the Official Journal of the Academy of Breastfeeding Medicine, 2013, 7(5): 337-342.
- [21] Keidar M, Haque S, Zhuang T S, et al. Micro-cathode arc thruster for phonesat propulsion[C]//27th Annual AIAA/USU Conference on Small Satellites. USA: AIAA, 2013.
- [22] Brieda L, Zhuang T, Keidar M. Towards near plume modeling of a micro cathode arc thruster[C]//49th AIAA Joint Propulsion Conference and Exhibit. San Jose, USA: AIAA, 2013.
- [23] 耿金越,刘旭辉,陈君,等.一种适用于微纳卫星姿轨控的新型微推 进模块—微弧阴极放电推力器[C]//第十一届中国电推进技术学术 研讨会.北京:中国宇航学会电推进专委会,2015. Geng J Y, Liu X H, Chen J, et al. A new micro-propulsion module for the attitude and orbit control of the micro and nano-satellites[C]//11th China Electric Propulsion Conference. Beijing: Chinese Astronautics Electric Propulsion Committee, 2015.
- [24] 耿金越,龙军,刘旭辉,等.微纳卫星用脉冲式微型电推进技术研究 [C]//空间安全与维护技术专业组2016年学术研讨会.北京:宇航学 会,2016.

Geng J Y, Long J, Liu X H, et al. Research on the pulsed micro electric propulsion for the micro and nano-satellites[C]//Symposium on Space Security and Maintenance Technique. Beijing: Chinese Society of Astronautics, 2016.

[25] 熊子昌,耿金越,王海兴. 同轴微阴极电弧推力器的粒子网格法数值 模拟[C]//第十二届中国电推进技术学术研讨会. 哈尔滨:哈尔滨工 业大学,2016.

Xiong Z C, Geng J Y, Wang H X. Particle-in-cell simulation of a coaxial micro cathode arc thruster [C]//12th China Electric Propulsion Conference. Harbin: HIT, 2016.

作者简介:

耿金越(1986-),男,博士,工程师,主要研究方向:空间电推进技术。 通信地址:北京市海淀区友谊路104号北京控制工程研究所(100094) 电话:(010)68112260

E-mail: jinyuegeng@163.com

沈岩(1978-),男,博士,研究员,博士生导师,主要研究方向:空间电 推进技术。本文通信作者。

通信地址:北京市海淀区友谊路104号院北京控制工程研究所 (100094)

电话:(010)68112255

E-mail: shenyan7806@163.com

(下转第231页)