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摘    要： 介绍了月球/中继星激光测距的科学意义、研究状况和发展趋势；研究了地月第二拉格朗日点（L2点）纯反

射式激光测距技术和任务设计，主要包含单体大孔径激光角锥反射器的设计与研制，以及基于云南天文台1.2 m望远镜的月

球/中继星激光测距系统研究。研究结果表明：采用单脉冲能量3 J和10 ns脉宽脉冲激光器，预期系统能接收到的单脉冲回波

光电子数约为0.74，单光子测距精度优于1 m。
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0    引　言

月球激光测距技术是研究引力物理、月球内部结

构和地球物理的重要手段。自从1969年人类首次实现

月球激光测距以来，测距精度由最初的米级提高到目

前的厘米级，相关参数的测量精度也相应提高了两个

数量级。激光测月台站测距的能力在不断升级，比如

美国的Apache Point台站标准点数据达到了毫米的（随

机误差）精度水平，新台站的加入（比如将来南半球

激光测月台站的加入）和新一代的月球激光反射器的

研制[1-2]将共同促进下一代毫米级精度（包含随机误差

和系统误差）的月球激光测距发展。

毫米级精度的月球激光测距对引力物理的研究

（包括等效原理的检验、万有引力常数随时间的变

化、地月距离尺度的牛顿反平方定律的检验、后牛顿

参数的测量等）具有极其重要的价值（见表 1） [3-5]。

由于上述引力和相对论检验是利用地球和月球质心之

间的距离进行各种物理效应的推算，而月球激光测距

测量的是月球表面（反射镜）和地球表面（测距台

站）的两点间距。因此，月球激光测距数据被用于研

究地月系统动力学的同时，也可被用于对地球和月球

的非球形和粘弹性等性质的研究（包括地月系统动力

学、月球内部结构、地球物理/大地测量学等）[6-7]。

我国探月工程“嫦娥4号”将在月球背面进行着陆探

测，并将于2018年发射一颗通信中继星。中继星将围

绕地月系统的第二拉格朗日点（L2点）沿半径约为

1.2万 km的晕轨道运行，距离地球约45万 km[8-11]。中继

星将搭载大孔径空心激光反射器，配合地面激光测距

台站进行激光测距实验；同时检验大孔径激光反射器

的性能，也为下一代月球激光反射器提供技术验证。

1    研究进展与发展趋势

卫星激光测距技术始于20世纪60年代，1964年，

美国国家航空航天局（NASA）戈达德空间飞行中心

（Goddard Space Flight Center）第一次成功对装有角

表 1    下一代毫米级月球激光测距实验在引力物理方面的

科学目标

Table 1    The scientific objectives in gravitational physics for the
next generation of lunar laser ranging experiments with

mm-level precision

项目    
根据现有测距数据

的引力实验精度

测距精度达到毫米级

时的引力实验精度

弱等效原理检验 Δα/α < 10–13 10–14

强等效原理检验 η = 4β – γ – 1 < 4 × 10–4 3 × 10–5

万有引力常数的时间变化 Ġ/G < 9 × 10–13 yr–1 5 × 10–14 yr–1

反平方定律检验 α < 3 × 10–11 10–12

后牛顿参数测量 β – 1 < 10–4 10–5
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反射器的卫星Beacon Explorer B进行了激光测距。卫星

激光测距的基本原理为测量激光脉冲在观测站和卫星

之间的往返飞行时间，从而得到观测站和卫星之间的

距离。具有对电磁干扰不敏感，测量精度高、测量速

度快等优点，主要用于对卫星轨道的高精度测量。此

外，还在地球动力学、大地测量学、地球物理学以及

天文学方面有很多的科学应用，例如参与建立全球大

地参考框架、确定地球质心和时变重力场、研究大陆

板块构造运动机制等。

1.1    研究进展

目前，国际上共有近70个激光测距观测站。1998年
9月，国际激光测距服务组织（International Laser
Ranging Service，ILRS）成立，对所有观测站的观测

和数据应用进行指导和协调[12]。所有的观测数据都可

通过网络共享。我国共有5个固定观测站，分别是北

京、上海、武汉、昆明和长春站。此外，还有1个位于

武汉的流动观测站，1个位于阿根廷的海外合作观测

站，以及3个北斗专用站。

卫星激光测距技术发展50多年以来，提高测距精

度和观测数据量是两大主要的目标。卫星激光测距的

精度最初仅有几米。随着高能量的短脉宽激光器的发

展，目前的精度已经达到几毫米。新型固体激光器技

术的不断发展，也使得测距频率从几十Hz发展到目前

的kHz甚至是10 kHz，从而有效地获取了更多的观测数

据。1994年，美国首先提出了针对近地卫星的高重复

频率测距的SLR2000系统[13]。1999年，奥地利Graz观测

站成为国际上首个实现kHz常规观测的台站[14]。近年

来，随着各种滤波技术发展和卫星轨道预报精度的提

升，白天卫星激光测距技术得到了长足的发展，使得

基于激光测距的全天时卫星精密定轨和针对太阳同步

轨道卫星的观测成为现实。两者相结合的白天kHz卫
星激光测距成为了新的热点和趋势。2009年以来，我

国的激光测距台站也先后实现了白天kHz的卫星激光

测距[14]。

目前，卫星激光测距主要的观测目标大都集中于

距地400 km的低轨到3.6万 km的地球同步轨道，并采

用双程激光测距技术（即记录激光脉冲的往返传输时

间）。对于中低轨道卫星，反射器一般采用球形或者

半球形的角锥阵列结构；对于高轨卫星，一般采用平

面的角锥阵列结构。限于观测台站的观测时数，国际

激光测距组织一般仅选取约50颗搭载激光反射器的飞

行器进行常规的激光测距。

1.2    发展趋势

近年来，随着深空探测任务的增多，深空卫星激

光测距正成为热门。对于月球或者超月球距离的空间

飞行器，由于距离非常远，传统的双程激光测距技术

得不到测距信号。为了解决回波光子数极少的难题，

应答式的单程激光测距技术（即测量脉冲的单向飞行

时间）正在成为普遍选择。2009年6月，NASA成功发

射了月球勘测轨道飞行器（Lunar Reconnaissance
Orbiter，LRO），10个激光测距站对其进行了单程激

光测距，标准点数据的精度达到5～10 cm。作为S频段

 
图 1    国际激光测距服务组织观测站分布

Fig. 1    The distribution of laser ranging stations of International Laser Ranging Service.
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测轨技术的参考和补充，激光测距将LRO的径向测轨

数据精度提高到了15 cm[16-18]。2016年3月，欧洲航天局

（ESA）成功发射了Exobiology On Mars（ExoMars）
火星探测器，其上搭载可进行单程激光测距的载荷[19]。

2015年4月，日本宇宙航空研究开发机构（JAXA）成功

发射了“隼鸟2号”（Hayabusa-2）小行星探测飞船，并

且在其66万 km的近地点成功实现了单程激光测距[20-21]。

单程激光测距技术依靠在轨道飞行器上安装的光

电探测器和时间计时器，需要占用飞行器一定的资

源，具有一定的技术复杂性。此外，测距精度的提高

受限于测站和轨道飞行器的时间同步精度。若在超过

地月的距离实现双程激光测距，深空卫星激光测距的

精度有望得到显著提高。2010—2013年期间，美国阿

帕奇点观测站对LRO进行了10次双程激光测距试验，

但没有收到任何回波信号[22]。原因是LRO搭载的反射

器反射截面太小，仅有月面Apollo 11反射器的1/50。
搭载大口径的单体激光反射器，同时提高反射截面和

减小反射光发散角，是实现双程深空卫星激光测距的

最优方案[23]。

下一代激光测距台站将采用波长1 064 nm的高功

率脉冲激光器取代现有的波长532 nm激光器。主要原

因是：1）波长1 064 nm激光的大气穿透率比波长532 nm
的激光更高；2）在其他规格相同的情况下，波长1 064 nm
激光的功率比波长532 nm的激光更大。

2    激光测距任务设计

地月系统的第二拉格朗日点（L2点）与地球的平

均距离约为45万 km，距月背的距离小于8万 km。我国

探月工程中的“嫦娥4号”的中继星将围绕L2点运行，其

轨道为半径约1.2万 km的晕轨道，如图 2所示。针对月

球中继星，本节介绍了对其进行激光测距的设计方案。

中继星激光测距的基本原理是通过精确测定激光

脉冲从地面观测站到中继星激光反射器间的往返时间

间隔（用∆t表示），从而算出地面观测站至目标的距

离（用R表示），R和∆t的关系式为：R=c·∆t/2，其中

c为光速。

激光测距方程如公式（1）所示

Ne =
E0 · Te · Tr · Ta2 · Ar · As · ρt · QE · α
h · v · π2 · (R · Div/2)2 · (R · Div1/2)2 (1)

其中：Ne为单脉冲回波光电子数；E0为激光单脉冲能

量；Te为发射系统的光学效率；Tr为接收系统的光学

效率；Ta为大气透过率；As为目标反射面积；Ar为接

收望远镜有效面积；ρt为目标反射率；QE为探测器量

子效率；α为衰减系数；R为距离；Div为激光发散角；

Div1为（角反射器）反射光束发散角；h为普朗克常

数；ν为激光频率。

月球激光测距的距离约为38万 km，根据式（1），

测距回波光子数目与距离的4次方成反比关系，可接收

到的光子数目非常有限，通常达到单光子甚至亚单光

子量级。对于对地球的距离，中继星比月球远约8万 km，

实现激光测距的难度更大。为了进一步增加回波光子

数目，我们将从地面激光测距系统和中继星反射镜两

方面的设计考虑。任务将从以下两个方面提出解决方

案：1）提高激光反射器的反射性能——在中继星载荷

重量要求的范围内设计反射面积尽量大、反射光发散

角尽量小的激光反射器；2）采用高功率激光发射和大

口径望远镜接收——利用云南天文台现有1.2 m望远镜

系统和10 ns脉宽的高功率脉冲激光器（单脉冲能量为

3 J）。

2.1    激光反射器

2.1.1    激光反射器选型

现有的月球激光测距实验都是利用美国和前苏联

20世纪70年代初放置于月球表面上的反射装置。目前

月球上共有5个反射器，它们分别是美国“阿波罗登月

计划”过程中安装的“Apollo 11号”“Apollo 14号”和

“Apollo 15号”号反射器，以及安装在前苏联月球车

“Lunakhod 1号”和“Lunakhod 2号”上的法国制造的反射

器[24]。这些反射器经过近半个世纪的使用，反射性能

已经大大降低（Apol lo系列下降了10倍左右，而

Lunakhod系列退化得更加严重 [25]）。各个反射器的主

要参数见表 2，其中Apollo 15反射器因为反射面积最

大而贡献了最多的月球激光测距数据，占月球激光测

距数据总量的77.3% [2]。

表 2    月球上现有的反射器参数一览

Table 2    The corner cube retroreflectors on the Moon

名称 安装时间
CCR孔径

/cm
CCR数目

阵列面积

/cm2

贡献数据量%
（1970—2009）

A-11 1969.07 3.8 100 46 × 46 10
A-14 1971.02 3.8 100 46 × 46 9.8
A-15 1971.07 3.8 300 104 × 61 77.3

L-1 1970.11 11 14 双排 0.1
L-2 1973.01 11 14 双排 2.8

 
图 2    地月第二拉格朗日点卫星激光测距方案示意图

Fig. 2    The schematic diagram of laser ranging for satellite on the second
Lagrange point of Earth-Moon system
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随着纳秒级高功率脉冲激光技术的成熟发展，国

际上的月球激光测距台站利用重复测量的手段已经把

测距的统计误差降低到毫米水平。但是由于月球天平

动效应的影响，月球上现有反射器的角锥反射镜阵列

结构将会使激光脉冲发生展宽，导致15～45 mm的测

距不确定度[5]，是目前限制月球激光测距精度进一步提

高的瓶颈。因此，新一代月球激光反射器将采用具有

单一光学反射中心的单体大孔径角锥反射镜设计。

中继星搭载的激光反射器将采用单体170 mm孔径

的设计方案，并且选用空心的反射镜结构（见图 3）。

这个设计方案有以下4点优势：①相比同孔径大小的实

体激光反射器，其重量仅为实体结构的一半；②入射

光在3个反射面通过反射膜反射，而非实体结构则在镜

体介质内部进行折射。因此，环境温度的涨落导致的

镜体形变和介质折射率变化对光束传播路径（光程）

的影响更小[26]；③单体结构消除了阵列结构（具有多

个反射点）的测距不确定度[1-2, 5]；④根据衍射理论，较

大的孔径将使反射光束的发散角更小，反射到地面的

激光光斑能量更加集中，有利于提高接收的回波光子

数目[27]。

2.1.2    激光反射器技术参数

为使地面台站得到足够的回波光子数目，需要使

中继星激光反射器与月球上最大的Apollo 15反射器有

接近等效的反射性能。根据公式（2）的估算，170 mm
孔径的反射器可以满足这个要求。选取了反射率为0.6
的中空反射器（理想Apollo 15反射器为0.9），原因

为：与中空反射器相比，阵列反射器的角锥数目虽然较

多，但是由于大孔径反射器具有较小光束发散角的优

势，其综合结果是单一170 mm角锥反射器的反射效率

等同于具有300个38 mm角锥阵列的Apollo 15反射器。

IApollo15

I170 mm
=

300
1
·
(

3.8
17

)2

·
(

3.8
17

)2

· 0.9
0.6
= 1.12 (2)

中继星激光反射器的具体参数如表 3所示。镜体

的材料为3片来自康宁公司的极低热膨胀玻璃（ULE
7972），其热膨胀系数优于1×10–7/K，采用碱性催化粘

结技术将3片玻璃粘接在一起（Hydroxide Catalysis
Bonding）[28-29]。

2.1.3    激光反射器二面角精度

反射器的发散角可用以下公式计算：θ = 3.26nδ。
其中n为折射率，对于空心反射镜可取1。若要使激光

反射器的反射光束发散角小于2″，则其二面角相对

90°的允许偏差δ为0.6″。如图 4所示，我们计算二面角

偏差为0.6″时的夫琅和费远场衍射图案，从而定量评

估地面激光测距台站可以接收到的相对光强。

我们计算了不同二面角时的地面回波相对强度

（见表 4），并以二面角偏差为0.6″情形下的云南天文

台的强度做归一化。当二面角较小时，由于远场衍射

接近艾里斑，光行差效应导致台站在衍射光斑的能量

中心外。随着3个二面角同时增大，远场衍射光斑开始

扩大，大部分光强集中于由6个衍射分量组成的环状带

上。当二面角偏差为0.3″时，台站可接收到的光强最

大。二面角偏差为0.6″时，测距回波强度是最优情况

（二面角偏差0.3″）的大约1/4；二面角偏差为0.8″时，

远场衍射光强相比0.6″时下降2个数量级；如果二面角

补偿超过0.8″，完全无法得到测距回波信号。

表 3    激光反射器技术参数

Table 3    Technical specifications of corner-cube retroreflector
设备 项目 参数

激光反射镜

有效孔径 Φ170 mm
镜体重量 ≤ 1.6 kg
二面角 <0.6″
发散角 ≤ 2″
材料 Corning ULE 7972

反射中心波长 532 nm

反射器整体
载荷质量 ≤ 3.5 kg
总体反射率 >0.6

 
图 3    单体空心激光反射器原理图（左）和实物原型图（右）

Fig. 3    The schematic diagram（left）and prototype（right）of single and
hollow laser retroreflector

 
图 4    3个二面角相对90°偏差均为0.6″的远场衍射图案

Fig. 4    The far field diffraction pattern of the CCR retroreflector for dihedral
angle offsets of 0.6 arc-second
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2.2    地面月球/中继星激光测距台站

2.2.1    测距系统设计

地面台站主要包括望远镜、激光器、跟踪控制系

统、激光发射系统、回波接收系统、时间频率系统、

测距控制系统、目标成像系统、环境监测系统、中继

星激光测距软件系统等，测距系统示意图如图  5所
示。通过各分系统协调工作，最终完成中继星的精密

跟踪、精确指向，激光发射、回波探测等任务。

中继星激光测距系统将基于云南天文台1.2 m口径

望远镜来设计，主要光路如图 6所示，表 5给出了激光

测距系统的主要参数选取情况。云南天文台1.2 m口径

的望远镜经过改造（重新镀膜），系统光路的效率得

到了显著的提高，是进行中继星激光测距的理想选

择。此外，将选用脉冲宽度为10 ns，单脉冲能量为3 J
的532 nm波长脉冲激光器，确保首先取得米级精度的

中继星激光测距数据。然后，再将脉冲激光升级为脉

表 4    不同二面角偏差时远场衍射光斑在台站位置的相对强度

Table 4    The variation of relative intensity of far field
diffraction pattern at ranging station with different

offsets of dihedral angle
二面角偏差/（″） 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
昆明（26° N） 2.04 3.60 4.52 4.00 2.49 1.00 0.20 0.02

 
图 5    中继星激光测距系统示意图

Fig. 5    The schematic diagram of laser ranging mission for relay satellite

 
图 6    1.2 m望远镜中继星激光测距系统光路图

Fig. 6    The optical path of relay satellite laser ranging system based on 1.2 m aperture telescope
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宽小于100 ps的激光器（脉冲能量减少为100 mJ），用

它进行月球与中继星激光测距，目标是使测距数据达

到毫米精度。这些技术参数的具体分析详见2.3.2节。

2.2.2    系统激光测距能力分析

根据激光测距方程可以计算激光反射器发散角为

2″时的激光测距回波光子数目，并与国际上已实现月

球激光测距的台站的测距回波光子数进行了对比，结

果见表 6。

利用云南天文台改造后建成的1.2 m望远镜月球/中
继星激光测距系统对中继星进行测距时，经探测器接

收转换后的平均光电子数仅有0.74，不考虑噪声情况

下探测器被触发的概率为52%，每秒钟探测器被信号

触发的次数为5.2，高于Grasse与McDonald测站的月球

激光测距回波强度。

2.2.3    测距误差分析

激光测距的误差来源包括系统误差和随机误差，

如表 7所示。随机误差可以利用重复测量（积累更多

数据）进一步降低；但是系统误差无法利用统计方法

消减，而必须依靠更准确的（误差）模型进行修正。

误差主要来源于主波探测器以及激光器脉宽。系

统接收单个光子的总随机误差为754 mm，因此，系统

内符精度优于1 m。系统误差可通过地靶测量获得激光

测距系统的精确延迟，地面靶常规标校误差约为2 mm。

在激光测距领域中，普遍采用Marini-Murray于1973年
提供的大气延迟修正模型，对于中继星处于仰角20°以
上时由该模型的修正所带来的系统误差为3～10 mm [30]。

4    结束语

月球/深空卫星激光测距技术是进行基础物理学和

地月系统研究的重要工具，目前我国还没有月球和深

空探测器激光测距的成功先例。开展地月L2点激光测

距研究，其成果不仅可以在空间环境下检验下一代“单

体大孔径”月球激光反射器的性能与技术成熟度，同时

带动我国地面激光测距台站的升级和测距能力的进一

步发展。下一代月球激光测距将利用高功率高重频的

先进脉冲激光器，配合单体大孔径角锥反射器，将激

光测距精度提高至少一个数量级。我国科学家应当把

握国家月球探测快速发展的契机，尽快将相关工作推

进到国际先进水平，未来能在月球/深空卫星激光测距

研究领域发挥相应的国际影响力。
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Study on Laser Ranging for Satellite on the Second Lagrange
Point of Earth-Moon System
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Abstract：The background and scientific goals of lunar/relay-satellite laser ranging is introduced. The current status and

development trends of laser ranging is presented. The mission design is discussed，mainly including the manufacture of a single

170-mm-aperture Corner-Cube Retroreflector（CCR）a the laser ranging system based on a 1.2-m telescope installed at the

Kunming station of Yunnan Observatory. A pulse laser with pulse width of 10ns and pulse energy of 3 J is used. The received photon

number of 0.74 is expected，and the ranging precision is better than 1 meter.

Key words：second Lagrange point of Earth-Moon；lunar laser ranging；laser retroreflector
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