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Fig. 1 Modes of the free return orbit
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Fig.2 Schematic figure of the synodic coordinate system
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Fig.3 The flying tracks in o-xy plane of the synodic coordinate system
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Fig. 4 Propagation law of deviational ellipse in the synodic coordinate system
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Analysis of Deviation Propagation for Translunar Free Return Orbit

PENG Qibo', HE Boyong’, ZHANG Hailian'
(1. Manned Space System Research Center, Beijing 100094, China;

2. College of Aerospace Science and Engineering, National Univ. of Defense Technology, Changsha 410073, China)

Abstract: Stability analysis of translunar free return orbit is significant for manned lunar mission orbit design and midcourse

correction strategy programming. In this paper, a deviation propagation equation for free return orbit is derived in the synodic

coordinate system. Based on the nominal orbit data and analysis method, the propagation law of orbit deviation is obtained. The

simulation result indicates that the orbit deviation increases with the increasing fly time, and the deviation increased more quickly

after the spacecraft orbiting the moon so that it could not return to the Earth. So the strict free return orbit in engineering is not

existed, and the midcourse correction in earth-moon transfer fly is necessary.

Key words: manned lunar landing misson; free return orbit; deviation propagation; midcourse correction
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