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深空探测返回舱着陆冲击动力学分析
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  摘 要:为分析深空探测返回舱着陆冲击动力学问题,首先建立包括返回舱及着陆土壤在内的全柔体着陆冲

击动力学分析模型,并利用“神舟号”载人飞船着陆冲击试验数据对土壤模型进行修正;然后利用非线性动力分析

软件LS-DYNA对深空探测返回舱着陆冲击过程进行仿真分析。通过典型着陆工况计算,得到了返回舱着陆过程

中姿态变化、应力分布、关键点加速度响应曲线及冲击能量分配等。仿真结果可为深空探测返回舱结构优化设计、

着陆姿态选择及地面试验等研究提供参考。
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Abstract:Firstlythefiniteelementmodelincludingthedeepspacereentrycapsuleandlandingbedfordynamic
analysisoflandingimpactisestablished.Thentheparametersofthelandingbedarecalibratedaccordingtothe
experimentaldataofShenzhouspacecraft.Thelandingimpactofdeepspacereentrycapsuleissimulatedand
analyzedbyusingLS-DYNA.Thelandingattitudechange,thestressdistribution,theaccelerationresponsecurves
ofthekeypointandtheimpactenergyabsorptionaregotaccordingtothesimulationandanalysesofthelanding
impactinthetypicalworkingconditions.Theseresultscanprovidereferencetothestructuraloptimization,the
landingattitudeselectionandthestudytogroundtestfordeepspaceexplorationreentrycapsules.
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0 引言

随着航天事业的不断发展,世界各航天大国的

深空探测计划层出不穷,深空探测相关技术发展突

飞猛进,其中着陆探测并取样返回是深空探测重要

且直接的手段之一,例如目前开展的嫦娥工程是我

国迈出深空探测第一步的重大举措,嫦娥工程三期

主要任务就是进行月面勘测及采样品返回[1]。深空

探测返回舱承载了大量精密试验仪器及样品,其能

否安全回收是深空探测中取样返回任务成败的最终

标志。相对载人飞船返回舱而言,由于深空探测的

特殊要求,深空探测返回舱具有体积小、质量轻、仪

器设备布置密集、着陆工况恶劣等特点,其着陆速度

可达10~14m/s[2],远大于载人飞船返回舱的着陆

速度,因此需要专门针对深空探测返回舱进行分析

研究。对深空探测返回舱着陆冲击动力学问题进行

研究是研制过程中不可缺少的必要环节。
世界各国对返回舱着陆冲击问题做了多方面的

研究,研究方法主要有改进试制试验、经验理论方法

及有限元模拟计算等[3]。1970年,美国国家航空航

天局的Benson(1970)[4]提出一种试验原理对“阿波

罗号”载人飞船指令舱的着陆冲击问题进行了研究;

1979年,Cassenti(1979)[5]针对着陆冲击中的压力

载荷(Pressureloading)建立了一种解析解模型,并



与已有试验进行了对比;同时,国外学者还对返回舱

的着水冲击问题[6]以及气囊缓冲系统的着陆冲击问

题[7]进行了多方面的研究。随着深空探测及载人航

天事业的迅速发展,近年来国内也针对返回舱着陆

冲击问题开展了许多研究。彭友君等(2007)[8]建造

了返回舱着陆冲击试验模拟试验床。与试验方法相

比,有限元方法具有计算周期短、投入成本低、重复

性好等优点,同时可以对返回舱的结构设计及优化

提供先验指导[9]。国防科大的郭鹏等(2010)[10]在
考虑着陆地面弹塑性的情况下建立了弹塑性接触模

型;北 京 空 间 飞 行 器 总 体 设 计 部 的 孙 国 江 等

(1998)[11]人利用非线性理论进行推导建立了返回

舱着陆冲击的动力学模型;清华大学的杜汇良、马春

生等[3,9,12]利用有限元等方法在返回舱着陆及着水

冲击方面做了许多卓有成效的研究。随着有限元方

法的广泛应用以及动力学分析软件的不断发展,利
用有限元方法求解返回舱的着陆冲击问题成为一种

趋势。目前,利用有限元方法对返回舱着陆冲击问

题的研究还比较少,如果能够建立真实有效的有限

元模型,分析不同工况条件下返回舱的着陆冲击影

响,将为返回舱的结构设计改进和相关试验提供先

验指导。
本文利用LS-DYNA大型商用软件对深空探测

返回舱着陆冲击过程中的动力学问题进行了仿真分

析。通过典型工况分析,获得了返回舱在不同工况

下着陆姿态、应力分布、关键点加速度响应曲线及冲

击能量分配等。分析结果可为深空探测返回舱的结

构优化设计、着陆姿态选择及地面试验研究等提供

参考。

1 深空探测返回舱着陆冲击分析模型

返回舱着陆冲击分析模型主要由返回舱有限元

模型及着陆土壤有限元模型两部分组成,均采用柔

体模型建模,并利用相关试验数据对土壤模型进行

修正。由于受工程实际需要以及着陆环境(风速、地
貌等)等多方面因素影响,返回舱在着陆过程中可能

以垂直或倾斜等姿态着陆。
为此,本文针对返回舱垂直着陆和斜着陆工况

的冲击问题进行对比分析。图1(a)和图1(b)分别

给出了返回舱垂直着陆和斜着陆时的有限元分析

模型。

1.1 深空探测返回舱有限元模型

为满足再入时气动外形要求,返回舱为钟罩形

图1 返回舱着陆冲击分析模型

Fig.1 Thefiniteelementmodelofspacecapsuleandlandingbed
 

侧壁加球冠状大底的密封结构,其主要结构包括前

端框/盖、仪器舱、侧壁蒙皮、大梁、大底等。返回舱

从外向内依次为防热结构、金属承力结构。在着陆

冲击过程中,金属承力结构起主要承力作用,防热结

构承力作用很小,在建模过程中可以忽略,仅通过质

量点来模拟其质量特性。根据返回舱各结构件的不

同特点,采用壳单元或六面体单元对相应结构进行

建模,其中蒙皮、桁条及仪器舱等薄壁结构采用壳单

元建模,试验仪器设备及样品采用六面体单元建模,
然后对各结构附相应的材料特性。建模时,返回舱

各部件单元间均采用共节点方式进行连接;同时,在
返回舱大底蒙皮与着陆地面之间设置面面接触。返

回舱有限元模型如图2所示。

图2 返回舱有限元模型

Fig.2 Thefiniteelementmodelofspacecapsule
 

1.2 着陆土壤有限元模型

返回舱着陆冲击仿真分析中,所采用的土壤材

料本构及模型能否真实有效地反映实际地面特性是
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仿真计算有效的基础,也是模型建立的重点和难点。
由于返回舱着陆冲击过程时间很短,所产生的

冲击波影响的土壤面积是有限的。因此为降低计算

成本和减少计算时间,可以建立有限的土壤模型,通
过对其下表面及圆周方向均施加无反射边界条件来

模拟无限大空间的土壤。通过强夯法或波速法计算

冲击波在土壤中的传播距离[13],确定土壤有限元模

型的尺寸。
强夯法给出落体撞地时对地基的影响深度的计

算公式

D=α MH (1)

式中,D 为影响深度,单位是 m;J2 +αI1-k=
0是与土质有关的系数,取值范围是0.42~0.8,沙
质土取较大值;M 为落体质量,单位是t;H 为落体,
自由下落高度,单位是m。

土壤的有限元模型采用六面体单元,网格划分

从着陆点向土壤模型边缘由细密逐渐变稀疏,有限

元模型如图1所示。土介质材料的本构十分复杂,
本文 采 用 了 典 型 的 可 压 溃 的 泡 沫 模 型———LS-
DYNA3DTYPE14模型[3,14],该模型综合考虑了土

壤的弹性性能、体积压缩性能及其特殊的屈服特性。
模型 中 的 相 关 参 数 可 以 利 用 Drucker-prager模

型[15]进行求解,其表达式为

J2 +αI1-k=0 (2)
I1=σii=σ1+σ2+σ3=-3p (3)

α= sinφ
3 3+sin2φ

(4)

k= 3ccosφ
3+sin2φ

(5)

其中,J2 为应力偏量的第二不变量;p为静水压力;

φ为摩擦角;c为粘结力参数。
屈服 函 数 ϕ 用 J2、p 和 常 数a0、a1、a2 来

表示[16]

ϕ=J2-[a0+a1p+a2p2] (6)

  在屈服面上,J2=13σ
2
y,而

σy = 3(a0+a1p+a2p2) (7)

  又知土壤的屈服满足下列关系[17]

J2=a0+a1p+a2p2 (8)

  由式(2)、式(3)和式(8)可得[3]

a0=k2,a1=6αk,a2=9α2 (9)

1.3 着陆土壤模型参数修正

土介质材料的本构十分复杂,为使所采用的可压

溃泡沫模型能够真实有效地反映返回舱着陆冲击过

程中的实际土壤特性,必须对土壤模型进行修正。为

此,本文根据返回舱着陆冲击的刚体舱试验[3],建立

刚体舱-土壤模型。根据刚体舱试验数据对土壤模

型参数进行调整,使仿真分析得到的结果与试验结果

吻合,从而获得能够反映真实土壤特性的材料参数。
试验 中 刚 体 舱 分 别 以 3.5 m/s、6.0 m/s、

8.0m/s和10.0m/s的速度垂直降落,选取与试验

相对应的特征点与试验结果进行对比。在理论计算

获得初始材料参数的基础上,对土壤模型相关参数

(包括材料密度、剪切模量G、体积模量K、屈服参数

a0,a1,a2)进行了不同组合,使仿真结果与试验结果

吻合。通过土壤参数标定,对应特征点的加速度峰

值及最大回弹速度与试验结果的对比如表1所示。

表1 刚体舱不同工况下对应特征点计算结果对比

Table1 Thecomparisonoftheresultsindifferentlanding
conditions 

垂直着
陆速度/
(m/s)

加速度峰值/g 最大回弹速度/(m·s-1)

仿真结果
试验平
均值

误差 仿真结果
试验平
均值

误差

3.5 11.38 17.78 -6.40 0.30 1.12 -0.82
6.0 30.14 27.41 2.73 0.52 1.32 -0.80
8.0 49.43 51.98 -2.55 1.84 1.63 0.21
10.0 69.20 66.40 2.80 2.52 1.64 0.88

通过土壤模型修正,得到一组参数可使该土壤

模型计算的结果和试验值基本吻合,所建土壤模型

能够有效反映真实土壤特性。因此,利用该土壤模

型可对返回舱着陆冲击动力学问题进行分析。

2 典型工况下仿真分析结果分析

根据返回舱的着陆速度范围[2],在着陆速度为

12m/s情况下,对返回舱垂直着陆及斜着陆工况进

行对比分析。根据着陆冲击过程及需要,仿真计算

时间取0.1s。

2.1 返回舱着陆姿态变化情况分析

如图3所示,为分析返回舱在着陆冲击过程中

的姿态变化情况,分别给出了0s、0.03s、0.06s及

0.1s时刻返回舱的着陆姿态。图3(a)为返回舱垂

直着陆时的姿态变化情况,可以看出,返回舱随时间

变化逐渐下落,大底中心位置首先与地面发生碰撞,
地面因碰撞产生了中心凹陷、四周凸起的近似中心

对称变形,整个大底结构与地面发生碰撞后返回舱

有所回弹,且未发生明显倾斜。返回舱斜着陆时的

姿态变化情况如图3(b)所示,可以看出,返回舱着
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陆时大底边缘首先触地,之后返回舱由倾斜状态逐

渐变为垂直,并向相反方向有所倾斜。相对垂直着

陆而言,斜着陆时返回舱后端框及侧壁结构发生明

显变形,且地面变形程度明显较大,撞击坑较深。

图3 返回舱着陆姿态变化情况

Fig.3 Thelandingattitudeofspacecapsule
 

2.2 返回舱着陆冲击过程中应力分析

图4给出了返回舱在0.006s时刻的应力云

图。从图中可以看出,返回舱在不同工况下着陆时,
大底落点位置均达到了材料的屈服极限,且未出现

断裂。同时,返回舱斜着陆时侧壁蒙皮结构受较大

应力影响,垂直着陆时侧壁结构所受应力较小。
如图5所示,取靠近大底中心位置特征点A 及

靠近斜着陆时落点位置特征点B 为研究对象,给出

两特征点对应的应力-时间变化曲线。从图中可以

看出,各应力曲线变化趋势相同,着陆冲击开始后应

力首先急剧增大,达到峰值后又迅速减小,并稳定在

一定值上下波动。垂直着陆时,特征点A 及斜着陆

时特征点B 均达到了材料的屈服极限。相对落点

位置而言,远离落点位置应力曲线达到峰值的时间

均有所延后,且斜着陆时延后程度明显较大。同时,
返回舱斜着陆时,大底中心位置特征点A 的应力峰

值未达到材料的屈服极限。
2.3 返回舱关键点冲击响应分析

返回舱大梁上承载了大量精密试验仪器,其所

受冲击响应情况是分析的重点。图6给出了两种工

况下返回舱大底和大梁上特征点的加速度响应曲

线。从图中可以看出,各加速度响应曲线变化趋势

相同,在着陆开始后迅速增大,并于0.01s时刻左右

达到峰值。大底结构在垂直着陆和斜着陆时的加速

度响应峰值分别为318g和410g,大梁结构加速度

响应峰值分别为81g和100g。因此可以看出,返
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图4 返回舱在0.006s时刻的应力分布

Fig.4 Thestressdistributionofspacecapsuleat0.006s
 

图5 返回舱上特征点不同工况下的应力-时间曲线

Fig.5 Thecurvesofstress-timeindifferentworkingconditions
 

回舱垂直着陆时大底及大梁的加速度响应比斜着陆

时明显减小,同时经返回舱大底等结构缓冲作用后

大梁上加速度响应明显变小。
经分析可以看出,返回舱大底在着陆冲击过程

中起主要缓冲作用,返回舱垂直着陆有利于充分发

挥大底结构的缓冲作用,对保护舱内仪器设备及样

品起到积极作用,而斜着陆不能充分发挥大底结构

的缓冲作用。

图6 返回舱不同工况下加速度 时间曲线

Fig.6 Thecurvesofacceleration-timeindifferent working
conditions 

 

2.4 返回舱着陆冲击能量分配情况

根据返回舱着陆冲击前后各结构能量变化情

况,可以得出着陆冲击能量的分配情况,如表2所

示。从表中可以看出,土壤是返回舱着陆冲击能量

吸收的主体,吸收能量的比例达到近50%以上,返
回舱大底结构在冲击过程中起主要缓冲作用,在返

回舱上各结构中吸收能量最多,其次为侧壁等结构。
同时,相对垂直着陆而言,斜着陆时返回舱大底结构

吸能比例明显减小,侧壁、后端框、大梁等结构吸能

比例明显增大。返回舱斜着陆时,大底吸能所占比

例不足,没有充分发挥大底的缓冲作用,但斜着陆有

利于土壤吸收能量,从而从整体上减小返回舱吸收

能量比例。

表2 不同工况下各部分冲击能量分配情况

Table2 Therateofdifferentparts’energyabsorptionin
differentworkingconditions %

着陆方式 大底 后端框 大梁 侧壁 土壤
其他
部件

剩余
动能

总能量

垂直着陆 28.54 0.52 0.951.8348.24 5.03 14.89 100
斜着陆 4.36 0.73 1.373.7265.08 5.26 19.47 100

3 结论

本文建立了能够真实反映返回舱着陆冲击的有

限元模型。利用该模型对不同工况下返回舱的着陆

冲击过程进行了仿真分析,给出了姿态变化、应力、
冲击响应及能量等仿真结果,主要得到以下结论:

1)返回舱垂直着陆过程中会出现回弹现象,而
斜着陆时返回舱会发生倾斜;斜着陆时,返回舱后端

框及侧壁结构会发生明显变形,地面变形程度明显

变大;

2)返回舱斜着陆时,侧壁受较大应力影响,返回
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舱大底上远离落点位置达到应力峰值的时间相对落

点位置有所延后,且斜着陆时延后程度明显变大;

3)由于大底的缓冲作用,大梁上的加速度响应

比大底上有明显减小;斜着陆时,返回舱的加速度响

应明显较大,垂直着陆时能更充分地发挥大底结构

的缓冲作用;

4)着陆地面是冲击能量吸收的主体,而大底则

是返回舱上最主要的吸能部位,垂直着陆时大底结

构能起到很好的缓冲作用,吸能比例达28%以上;
斜着陆时,大底吸能比例不足5%;但斜着陆有利于

土壤吸收能量,从而从整体上减小返回舱吸收能量

比例。
本文仅从返回舱所受冲击、应力等方面对返回

舱垂直着陆和斜着陆工况进行了对比分析,在深空

探测返回舱的实际研制过程中,如何选择返回舱着

陆姿态受多方面因素影响,需要综合考虑加以权衡,
从而选出最优着陆姿态方案。
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