中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁屏蔽霍尔推力器技术的发展与展望

徐亚男 康小录 余水淋

徐亚男, 康小录, 余水淋. 磁屏蔽霍尔推力器技术的发展与展望[J]. 深空探测学报, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
引用本文: 徐亚男, 康小录, 余水淋. 磁屏蔽霍尔推力器技术的发展与展望[J]. 深空探测学报, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
XU Yanan, KANG Xiaolu, YU Shuilin. Development and Prospect of Magnetically Shielded Hall Thruster[J]. Journal of Deep Space Exploration, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
Citation: XU Yanan, KANG Xiaolu, YU Shuilin. Development and Prospect of Magnetically Shielded Hall Thruster[J]. Journal of Deep Space Exploration, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005

磁屏蔽霍尔推力器技术的发展与展望

doi: 10.15982/j.issn.2095-7777.2018.04.005

Development and Prospect of Magnetically Shielded Hall Thruster

  • 摘要: 磁屏蔽霍尔推力器技术是近年来霍尔推进领域最具影响的创新突破,对于拓展霍尔推力器的应用范围,提高推力器的寿命具有重要意义。介绍了磁屏蔽霍尔推力器的原理及优缺点,从磁屏蔽的提出与验证、不同功率量级霍尔推力器的磁屏蔽技术以及磁屏蔽霍尔推力器热设计、背景压力敏感性、振荡模式转换等方面介绍了磁屏蔽的研究现状,并对未来磁屏蔽霍尔推力器技术的发展进行了展望。
  • [1] 康小录,杭观荣,朱智春. 霍尔推进技术的发展与应用[J]. 火箭推进,2017,43(1):8-17. KANG X L,HANG G R,ZHU Z C. Development and application of Hall el ctric propulsion technology[J]. Journal of Rocket Propulsion,2017,43(1):8-17.
    [2] ROY S,PANDEY B P. Plasma wall interaction inside a Hall thruster[J]. Journal of Plasma Physics,2002,68(4):305-319
    [3] MORZOVA,SAVELYEV V. Fundamentals of stationary plasma thruster theory[J].Reviews of Plasma Physics,2000,21:203-391.
    [4] MIKELLIDES I,KATZ I,HOFER R. Design of a laboratory Hall thruster with magnetically shielded channel walls,phase I:numerical simulations[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S. l.]:AIAA,2013.
    [5] MIKELLIDES I,KATZ I,HOFER R,et al. Design of a laboratory Hall thrusterwithmagnetically shielded channel walls,phase Ⅲ:comparison of theory with experiment[C]//Aiaa/asme/sae/asee Joint Propulsion Conference & Exhibit.[S. l.]:AIAA,2012.
    [6] MIKELLIDES I,KATZ I,HOFER R. Design of a laboratory Hall thruster with magnetically shielded channel walls,phase Ⅱ:experiments[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S. l.]:AIAA,2012.
    [7] HOFER R R,KAMHAWI H. Development status of the 12.5 kW HERMeS Hall thruster for the solar electric propulsion technology demonstration mission[C]//AIAA/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2015.
    [8] HUANG W S,WILLIAMS G J. Plasma plume characterization of the HERMeS during a 1722-hr wear test campaign[C]//.International Electric Propulsion Conference. Atlanta Georgia USA:Georgia Institute of Technology,2017.
    [9] GILLAND J H,PETERSON P Y. Trends of the HERMeSThruster as a function of throttlepoint[C]//International Electric Propulsion Conference. Atlanta Georgia USA,Georgia Institute of Technology,2017.
    [10] ORTEGA A L,MIKELLIDES I G. Numerical simulations for the assessment of erosion in the 12.5-kW Hall effect rocket with magnetic shielding (HERMeS)[C]//International Electric Propulsion Conference. Atlanta Georgia USA,Georgia Institute of Technology,2017.
    [11] POLK J E,ROBERT L. Front pole cover erosion in the 12.5 kW HERMeS Hall thrusterover a range of operating conditions[C]//International Electric Propulsion Conference. Atlanta Georgia USA:Georgia Institute of Technology,2017.
    [12] JORNS B A,DODSON C. Mechanisms for pole piece erosion in a 6-kW magnetically-shielded Hall thruster[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2016.
    [13] MIKELLIDES I G,HOFER R. The effectiveness of magnetic shielding in high-isp Hall thrusters[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2013.
    [14] HOFER R R,Cusson S E. The H9 magnetically shielded Hall thruster[C]//International Electric Propulsion Conference. Atlanta Georgia USA:Georgia Institute of Technology,2017.
    [15] GIANNETTI V,PIRAGINO A. Development of a 5 KW low-erosion Hall effectthruster[C]//International Electric Propulsion Conference. Atlanta Georgia USA:Georgia Institute of Technology,2017.
    [16] CONVERSANO R W,DAN M G,HOFER R R,et al. Development and initial testing of a magnetically shielded miniature Hall thruster[J]. IEEE Transactions on Plasma Science,2015,43(1):103-117
    [17] CONVERSANO R,HOFER R,MIKELLIDES I,et al. Magnetically shielded miniature Hall thruster:design improvement and performance analysis[C]//International Electric Propulsion Conference. Hyogo-Kobe Japan:Japan Aerospace Exploration Agency,2015.
    [18] CONVERSANO R W,DAN M G,HOFER R R,et al. Performance analysis of a low-power magnetically shielded Hall thruster:experiments[J]. Journal of Propulsion & Power,2017,33(4):975-983
    [19] CONVERSANO R W,DAN M G,MIKELLIDES I G,et al. Performance analysis of a low-power magnetically shielded Hall thruster:computational modeling[J]. Journal of Propulsion & Power,2017,33(4):992-1001
    [20] AIAA. Magnetically shielded miniature hall thruster:performance assessment and status update[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2000.
    [21] DUCCI C,MISURI T. Magnetically shielded HT100 experimental campaign[C]//International Electric Propulsion Conference. Atlanta Georgia USA,Georgia Institute of Technology,2017.
    [22] LOU G,VAUDOLON J,MAZOUFFRE S,et al. Design and characterization of a 200W Hall thruster in "magnetic shielding" configuration[C]//AIAA/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2016.
    [23] KATZ I,MIKELLIDES I G,HOFER R R,et al. Channel wall plasma thermal loads in Hall thrusters with magnetic shielding[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S. l.]:AIAA, 2011.
    [24] SEKERAK M J,LONGMIER B W,GALLIMORE A D. Mode transitions in magnetically shielded Hall effect thrusters[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2014.
    [25] HOFER R,ANDERSON J. Finite pressure effects in magnetically shielded Hall thrusters[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2014.
  • [1] 郑见杰, 杜园, 王炜娜, 罗广求, 刘治钢.  深空探测用锂离子蓄电池在轨管理策略研究 . 深空探测学报, 2020, 7(1): 81-86. doi: 10.15982/j.issn.2095-7777.2020.20191030001
    [2] 于登云, 张哲, 泮斌峰, 刘传凯, 丁亮, 朱继宏, 高海波, 刘金国, 陈鹏.  深空探测人工智能技术研究与展望 . 深空探测学报, 2020, 7(1): 11-23. doi: 10.15982/j.issn.2095-7777.2020.20190916001
    [3] 胡文军, 刘继忠, 唐玉华, 陈军红, 张玮, 张哲, 李上明, 胡绍全.  空间同位素热/电源安全性技术指标体系框架研究 . 深空探测学报, 2020, 7(1): 73-80. doi: 10.15982/j.issn.2095-7777.2020.20190911001
    [4] 徐浩, 裴福俊, 蒋宁.  一种基于李群描述的深空探测器姿态估计方法 . 深空探测学报, 2020, 7(1): 102-108. doi: 10.15982/j.issn.2095-7777.2020.20171117002
    [5] 乔学荣, 郭际, 米娟.  高比能量锂氟化碳电池在深空探测器上的应用试验研究 . 深空探测学报, 2020, 7(1): 87-92. doi: 10.15982/j.issn.2095-7777.2020.20191223001
  • 加载中
计量
  • 文章访问数:  1076
  • HTML全文浏览量:  1
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-01
  • 修回日期:  2018-05-28

磁屏蔽霍尔推力器技术的发展与展望

doi: 10.15982/j.issn.2095-7777.2018.04.005

摘要: 磁屏蔽霍尔推力器技术是近年来霍尔推进领域最具影响的创新突破,对于拓展霍尔推力器的应用范围,提高推力器的寿命具有重要意义。介绍了磁屏蔽霍尔推力器的原理及优缺点,从磁屏蔽的提出与验证、不同功率量级霍尔推力器的磁屏蔽技术以及磁屏蔽霍尔推力器热设计、背景压力敏感性、振荡模式转换等方面介绍了磁屏蔽的研究现状,并对未来磁屏蔽霍尔推力器技术的发展进行了展望。

English Abstract

徐亚男, 康小录, 余水淋. 磁屏蔽霍尔推力器技术的发展与展望[J]. 深空探测学报, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
引用本文: 徐亚男, 康小录, 余水淋. 磁屏蔽霍尔推力器技术的发展与展望[J]. 深空探测学报, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
XU Yanan, KANG Xiaolu, YU Shuilin. Development and Prospect of Magnetically Shielded Hall Thruster[J]. Journal of Deep Space Exploration, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
Citation: XU Yanan, KANG Xiaolu, YU Shuilin. Development and Prospect of Magnetically Shielded Hall Thruster[J]. Journal of Deep Space Exploration, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
参考文献 (25)

目录

    /

    返回文章
    返回