%0 Journal Article %T 近地小行星2016HO3表面温度建模研究 %T Modeling of Surface Temperature for Near-Earth Asteroid 2016HO3 %A 贾晓宇 %A 杨晨 %A 王彤 %A 文毅 %A JIA,Xiaoyu %A YANG,Chen %A WANG,Tong %A WEN,Yi %J 深空探测学报(中英文) %J Journal of Deep Space Exploration %@ 2095-7777 %V 6 %N 5 %D 2019 %P 470-480 %K 近地小行星;2016HO3;热物理模型;热环境;仿真 %K near Earth-asteroid;2016HO3;thermal physics model;thermal environment;simulation %X 2019年4月18日,中国国家航天局(CNSA)公布了小行星探测计划,将近地小行星2016HO3作为探测任务目标之一。主要梳理了2016HO3热环境分析的要素,通过调研国际上目前观测数据,得到2016HO3的初步环境参数,使用近地小行星热模型(NEATM)与小行星热物理模型(TPM)开展了小行星2016HO3表面温度场建模与分析,综合得出小行星温度上限为412 K;同时结合其可能的自转条件,仿真分析了不同位置的昼夜温差变化特性,发现2016HO3最大温差大约为30 K。由于两个模型均不能直接处理极夜情况,在TPM模型基础上采用对自转周期光照进行平均思路,给出了极夜条件下的温度分析方法,并获得小行星2016HO3的温度下限。 %X On April 18, 2019, the China National Space Administration (CNSA) published the plan of asteroid exploration, which would select the near-earth asteroid 2016HO3 as one of its targets. On this paper, the parameters of 2016HO3 for thermal environment analysis were discussed. By investigating the current international observation data, the environmental parameters of 2016HO3 are obtained preliminarily. Then the near-Earth asteroid thermal model(NEATM) and asteroid thermal physics model (TPM) were used to model and analyze the surface temperature of 2016HO3, and the upper boulder of the temperature was 412 K. Considering the spinning effect, the day and night temperature difference at different locations was simulated and analyzed, and the temperature analysis method under the polar night conditions was proposed, then the maximum temperature difference at any position was determined to be about 30 K. Last on the basis of TPM, by the idea of the average illumination during the rotation period, the temperature analysis method of the polar night was proposed, and lower limit of temperature of 2016HO3 was achieved. %R 10.15982/j.issn.2095-7777.2019.05.008 %U http://jdse.bit.edu.cn/sktcxbcn/ch/reader/view_abstract.aspx %1 JIS Version 3.0.0