中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“天问一号”着陆区遥感形貌建模与制图分析

柳思聪 童小华 刘世杰 谢欢 赵慧 刘大永 许雄 叶真 王超 刘祥磊

柳思聪, 童小华, 刘世杰, 谢欢, 赵慧, 刘大永, 许雄, 叶真, 王超, 刘祥磊. “天问一号”着陆区遥感形貌建模与制图分析[J]. 深空探测学报(中英文).
引用本文: 柳思聪, 童小华, 刘世杰, 谢欢, 赵慧, 刘大永, 许雄, 叶真, 王超, 刘祥磊. “天问一号”着陆区遥感形貌建模与制图分析[J]. 深空探测学报(中英文).
LIU Sicong, TONG Xiaohua, LIU Shijie, XIE Huan, ZHAO Hui, LIU Dayong, XU Xiong, YE Zhen, WANG Chao, LIU Xianglei. Topography Modeling, Mapping and Analysis of the China’s First Mars Mission Tianwen-1 Landing Area from Remote Sensing Images[J]. Journal of Deep Space Exploration.
Citation: LIU Sicong, TONG Xiaohua, LIU Shijie, XIE Huan, ZHAO Hui, LIU Dayong, XU Xiong, YE Zhen, WANG Chao, LIU Xianglei. Topography Modeling, Mapping and Analysis of the China’s First Mars Mission Tianwen-1 Landing Area from Remote Sensing Images[J]. Journal of Deep Space Exploration.

“天问一号”着陆区遥感形貌建模与制图分析

基金项目: 国家自然科学基金(42071324,42171363,41804166);上海市“科技创新行动计划”启明星项目(21QA1409100)
详细信息
    作者简介:

    柳思聪(1986– ),副教授,博士生导师,主要研究方向:航天遥感智能信息处理理论方法与应用研究。通讯地址:上海市杨浦区四平路1239号同济大学测绘与地理信息学院(200092)电话:13641900580E-mail:sicong.liu@tongji.edu.cn

    童小华(1971– ),教授、副校长,博士生导师,主要研究方向:航天测绘遥感与深空探测。本文通讯作者。通讯地址:上海市杨浦区四平路1239号(200092)Email:xhtong@tongji.edu.cn

  • ● High-resolution terrain data of the Tianwen-1 landing area is made up by jointly use of the photogrammetry and the Shape from Shading (SFS) methods. ● Topography category and distribution of the land area is classified by using a deep learning network. ● The high-resolution terrain data made in this paper is highly consistent with NASA and CNSA developed DEM products. ● Results indicate that the overall terrain of the Tianwen-1 landing area is flat and the morphology category is relatively single, which meets the requirements of the probe's safe landing. ● The subsequent scientific exploration of Zhurong Mars Rover can be comprehensively considered in combination with multi-source high-resolution terrain data and topography classification results.

Topography Modeling, Mapping and Analysis of the China’s First Mars Mission Tianwen-1 Landing Area from Remote Sensing Images

  • 摘要: 综合利用火星轨道器多源遥感影像数据,构建了火星表面形貌精细建模与自动分类方法。 其中,结合摄影测量法与明暗恢复形状法(Shape From Shading,SFS)研究制作了“天问一号”着陆区域的高分辨率三维地形,并通过深度卷积神经网络对着陆区形貌类别及其分布进行分类分析。通过地形剖面分析的结果表明,所提出方法制作的高精度地形数据与美国国家航空航天局(National Aeronautics and Space Administration,NASA)及中国国家航天局(China National Space Administration,CNSA)发布的生成数字高程模型(Digital Elevation Model, DEM)产品高程误差均值分别为1.866 m和1.074 m,均具有较高一致性。此外,通过形貌及制图综合分析可以看出,着陆点附近坡度在3°以下、着陆点附近地表的起伏程度不大于30 cm,以此验证了“天问一号”着陆区整体地势平缓、形貌类别较单一,符合探测器安全着陆的需求。国产“天问一号”高分辨率相机数据制作的地形及分类结果可有效应用于着陆及巡视探测区的形貌特征分析,联合HiRISE等多源火星遥感数据,可为后续“祝融号”巡视器科学探测提供重要的基础数据和参考信息。
    Highlights
    ● High-resolution terrain data of the Tianwen-1 landing area is made up by jointly use of the photogrammetry and the Shape from Shading (SFS) methods. ● Topography category and distribution of the land area is classified by using a deep learning network. ● The high-resolution terrain data made in this paper is highly consistent with NASA and CNSA developed DEM products. ● Results indicate that the overall terrain of the Tianwen-1 landing area is flat and the morphology category is relatively single, which meets the requirements of the probe's safe landing. ● The subsequent scientific exploration of Zhurong Mars Rover can be comprehensively considered in combination with multi-source high-resolution terrain data and topography classification results.
  • 图  1  所构建的高分辨率三维地形建模流程

    Fig.  1  High-resolution DEM construction process

    图  2  构建的高分辨率形貌分类方法流程图

    Fig.  2  The flow chart of high-resolution topography classification method

    图  3  所使用的卷积神经网络架构图

    Fig.  3  Convolutional neural network architecture

    图  4  本文制作的“天问一号”着陆区 (a) 高分辨率DEM (0.25m/pixel)及剖面线分布情况; (b) DEM晕渲图

    Fig.  4  High-resolution DEM (0.25m/ Pixel) that made in this paper of Tianwen-1 landing area and profile lines

    图  5  本文方法制作的DEM地形数据与公开发布产品在不同剖面上高程值对比

    Fig.  5  The elevation values comparison in different sections of DEM data produced by our method and published products

    图  7  “天问一号”着陆区表面形貌类别及示例

    Fig.  7  Topography categories and examples in Mars Tianwen-1 landing zone

    图  6  “天问一号”着陆区地形产品坡度及粗糙度图

    Fig.  6  The slope map and roughness map of the terrain products in the Tianwen-1 landing area built in this paper

    图  8  HiRISE和HiRIC轨道器高分辨率影像分类结果图

    Fig.  8  The topography classification results of HiRISE and HiRIC orbiters high-resolution image presented in this paper

    图  9  “祝融号”火星车巡视路线与HiRISE、HiRIC形貌分类结果叠加对比图

    Fig.  9  Zhurong rover patrol route and its overlapping with HiRISE and HiRIC topography classification results

    表  1  HiRISE和HiRIC相关参数

    Table  1  Related parameters of HiRISE and HiRIC instruments

    参数HiRISEHiRIC
    地面采样距离30cm/pixel(300 km高度处)50cm/pixel(265 km高度处)
    光谱范围/μm蓝绿0.4~0.6,红0.55~0.85,近红外0.8~1.0蓝0.45~0.52、绿0.52~0.60、红0.63~0.69、近红0.76~0.90、全色0.45~0.9
    视场角/(°)1.14×0.182×0.693
    焦距/mm11 994.998 84 640
    像素间距/μm128.75(全色)、35(多光谱)
    下载: 导出CSV

    表  2  数据描述及训练样本个数

    Table  2  Data description and the number of training samples

    轨道器影像分辨率/m图像大小/Pixel训练样本个数/Pixel
    光滑风化层粗糙表面沙丘
    HiRISE(美国)0.252 979×5 60289 70046 11288 214
    HiRIC(中国)0.707 448×6 723101 70346 52128 942
    下载: 导出CSV
  • [1] SQUYRES S W,GROTZINGER J P,ARVIDSON R E,et al. In situ evidence for an ancient aqueous environment at Meridiani Planum,Mars[J]. Science,2004,306(5702):1709-1714. doi:  10.1126/science.1104559
    [2] JAUMANN R,NEUKUM G,BEHNKE T,et al. The High-Resolution Stereo Camera (HRSC) experiment on Mars Express:instrument aspects and experiment conduct from interplanetary cruise through the nominal mission[J]. Planetary and Space Science,2007,55(7-8):928-952. doi:  10.1016/j.pss.2006.12.003
    [3] LEVY J, HEAD J, MARCHANT D. Thermal contraction crack polygons on Mars: classification, distribution, and climate implications from HiRISE observations[J]. Journal of Geophysical Research: Planets, 2009, 114(E1).
    [4] BIBRING J P,LANGEVIN Y,POULET F,et al. Perennial water ice identified in the south polar cap of Mars[J]. Nature,2004,428(6983):627-630. doi:  10.1038/nature02461
    [5] YE P J,SUN Z Z,RAO W,et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China Technological Sciences,2017,60(5):649-657. doi:  10.1007/s11431-016-9035-5
    [6] 朱新波,褚英志. “天问”一号任务火星环绕器总体设计[J]. 中国航天,2021(6):25-31. doi:  10.3969/j.issn.1002-7742.2021.06.004

    ZHU X B,CHU Y Z. The overall design of Tianwen 1 Mars orbiter[J]. Aerospace China,2021(6):25-31. doi:  10.3969/j.issn.1002-7742.2021.06.004
    [7] WAN W,YU T,DI K,et al. Visual localization of the Tianwen-1 lander using orbital,descent and rover images[J]. Remote Sensing,2021,13(17):3439. doi:  10.3390/rs13173439
    [8] WU X,LIU Y,ZHANG C,et al. Geological characteristics of China's Tianwen-1 landing site at Utopia Planitia,Mars[J]. Icarus,2021,370:114657. doi:  10.1016/j.icarus.2021.114657
    [9] MILLS M M,MCEWEN A S. Preliminary regional geologic map of Utopia Planitia in the potential Tianwen-1 landing region[J]. LPI Contributions,2021,2610:7015.
    [10] WANG Y,LI B,ZHANG J,et al. The preliminary study of dust devil tracks in southern Utopia Planitia,landing area of Tianwen-1 mission[J]. Remote Sensing,2021,13(13):2601. doi:  10.3390/rs13132601
    [11] LUO Y,YAN J,LI F,et al. Spatial autocorrelation of martian surface temperature and its spatio-temporal relationships with near-surface environmental factors across China’s Tianwen-1 landing zone[J]. Remote Sensing,2021,13(11):2206. doi:  10.3390/rs13112206
    [12] 邸凯昌,刘斌,刘召芹. 火星遥感制图技术回顾与展望[J]. 航天器工程,2018,27(1):10-24. doi:  10.3969/j.issn.1673-8748.2018.01.002

    DI K C,LI B,LIU Z Q. Review and prospect of Mars mapping technique using remote sensing data[J]. Spacecraft Engineering,2018,27(1):10-24. doi:  10.3969/j.issn.1673-8748.2018.01.002
    [13] SCHOLTEN F,GWINNER K,ROATSCH T,et al. Mars Express HRSC data processing–methods and operational aspects[J]. Photogrammetric Engineering & Remote Sensing,2005,71(10):1143-1152.
    [14] ALBERTZ J,ATTWENGER M,BARRETT J,et al. HRSC on Mars express-photogrammetric and cartographic research[J]. Photogrammetric Engineering & Remote Sensing,2005,71(10):1153-1166.
    [15] KIRK R L, HOWINGTON-KRAUS E, ROSIEK M R, et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: meter-scale slopes of candidate Phoenix landing sites[J]. Journal of Geophysical Research: Planets, 2008, 113(E3).
    [16] KIM J R, MULLER J P, BLAME M, et al. Geometric ground control of very high resolution imagery using HRSC intersection points and a non-Rigorous camera model[C]//Lunar and Planetary Science Conference. 2007 (1338): 1811.
    [17] KIM J R,LIN S Y,MULLER J P,et al. Multi-resolution digital terrain models and their potential for Mars landing site assessments[J]. Planetary and Space Science,2013,85:89-105. doi:  10.1016/j.pss.2013.06.001
    [18] BUE B D,STEPINSKI T F. Automated classification of landforms on Mars[J]. Computers & Geosciences,2006,32(5):604-614.
    [19] STEPINSKI T F,BAGARIA C. Segmentation-based unsupervised terrain classification for generation of physiographic maps[J]. IEEE Geoscience and Remote Sensing Letters,2009,6(4):733-737. doi:  10.1109/LGRS.2009.2024333
    [20] KRAUT A, WETTERGREEN D. Classification of Mars terrain using multiple data sources[C]// Conference on Intelligent Data Understanding. 2010: 54-68.
    [21] ONO M, ROTHROCK B, ALMEIDA E, et al. Data-driven surface traversability analysis for Mars 2020 landing site selection[C]//2016 IEEE Aerospace Conference. IEEE, 2016: 1-12.
    [22] ROTHROCK B, KENNEDY R, CUNNINGHAM C, et al. Spoc: deep learning-based terrain classification for mars rover missions[M]. [S. l. ]: AIAA SPACE, 2016.
    [23] ZOU Y,ZHU Y,BAI Y,et al. Scientific objectives and payloads of Tianwen-1,China’s first Mars exploration mission[J]. Advances in Space Research,2021,67(2):812-823. doi:  10.1016/j.asr.2020.11.005
    [24] SHORTHILL R W,MOORE H J,HUTTON R E,et al. The environs of Viking 2 lander[J]. Science,1976,194(4271):1309-1318. doi:  10.1126/science.194.4271.1309
    [25] 国家航天局. 我国首次火星探测天问一号任务着陆区域高分影像图发布[EB/OL]. (2021-06-07)[2022-01-13]. http://www.cnsa.gov.cn/n6758823/n67588.38/c6812111/content.html.
    [26] LI R,HWANGBO J,CHEN Y,et al. Rigorous photogrammetric processing of HiRISE stereo imagery for Mars topographic mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(7):2558-2572. doi:  10.1109/TGRS.2011.2107522
    [27] MCEWEN A S, ELIASON E M, BERGSTROM J W, et al. Mars reconnaissance orbiter's high resolution imaging science experiment (HiRISE)[J]. Journal of Geophysical Research: Planets, 2007, 112(E5).
    [28] XIN X,DI K,WANG Y,et al. Automated detection of new impact sites on Martian surface from HiRISE images[J]. Advances in Space Research,2017,60(7):1557-1569. doi:  10.1016/j.asr.2017.06.044
    [29] 孟庆宇,付中梁,董吉洪等. 火星探测高分辨率可见光相机光学系统设计[J]. 深空探测学报(中英文),2018,5(5):458-464.

    MENG Q,FU Z,DONG J,WANG D. The optical system design of the high-resolution visible spectral camera for China Mars exploration[J]. Journal of Deep Space Exploration,2018,5(5):458-464.
    [30] MENG Q,WANG D,WANG X,et al. High Resolution Imaging Camera (HiRIC) on China’s first Mars exploration Tianwen-1 mission[J]. Space Science Reviews,2021,217(3):1-29.
    [31] YAN W,LIU J,REN X,et al. Detection capability verification and performance test for the high resolution imaging camera of China’s Tianwen-1 mission[J]. Space Science Reviews,2021,217(6):1-21.
    [32] LIU S,ZHAO H,DU Q,BRUZZONE L,et al. ,Novel Cross-Resolution Feature-Level Fusion for Joint Classification of Multispectral and Panchromatic Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-14.
    [33] 中国探月与深空探测网. 天问一号环绕器进入遥感使命轨道[EB/OL]. (2021-11-08)[2022-01-13]. http://www.clep.org.cn/n5982341/c6812977/content.html.
  • [1] 梁伟光, 张宇, 张尧.  “天问一号”近火飞越应急轨控策略设计方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210112
    [2] 张辉, 卢皓, 于天一, 谢圆, 王成, 鲍硕, 胡晓东.  “祝融号”火星车遥操作技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210108
    [3] 黄明星, 高树义, 王立武, 王文强, 李健.  “天问一号”降落伞材料性能分析与试验研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210025
    [4] 王靓玥, 郭延宁, 马广富.  火星探测器制动捕获策略研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20171123001
    [5] 张宝明, 朱岩, 王连国, 杨建峰, 周斌, 徐卫明, 孙树全, 蔡治国, 徐欣锋, 杜庆国.  中国首次火星探测任务火星车有效载荷定标试验 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200043
    [6] 滕锐, 韩宏伟, 乔栋.  火星探测最优离轨制导方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190315001
    [7] 薛彬, 刘生润, 杨建峰.  用于火星表面生命信息探测的激光拉曼技术进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.05.012
    [8] 徐侃彦, 马玲玲, 印红, 张轶男.  火星无人探测与行星保护 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.002
    [9] 申智春, 林小艳, 程坤, 王海鹏.  火星探测器器箭分离冲击响应影响分析与评价 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.012
    [10] 杨甲森, 刘明洁, 陈托, 智佳, 张华伟, 王炜, 陈志敏.  中国首次火星探测任务有效载荷地面综合测试系统设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.006
    [11] 李春来, 刘建军, 耿言, 曹晋滨, 张铁龙, 方广有, 杨建峰, 舒嵘, 邹永廖, 林杨挺, 欧阳自远.  中国首次火星探测任务科学目标与有效载荷配置 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.002
    [12] 刘建军, 苏彦, 左维, 任鑫, 孔德庆, 温卫斌, 张洪波, 李春来.  中国首次火星探测任务地面应用系统 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.003
    [13] 耿言, 周继时, 李莎, 付中梁, 孟林智, 刘建军, 王海鹏.  我国首次火星探测任务 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.001
    [14] 刘庆会.  火星探测VLBI测定轨技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.005
    [15] 朱岩, 白云飞, 王连国, 沈卫华, 张宝明, 王蔚, 周盛雨, 杜庆国, 陈春红.  中国首次火星探测工程有效载荷总体设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.06.002
    [16] 叶斌龙, 赵健楠, 黄俊.  美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.04.002
    [17] 于登云, 孙泽洲, 孟林智, 石东.  火星探测发展历程与未来展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.002
    [18] 李贺, 全齐全, 王鑫剑, 姜生元, 邓宗全.  一种基于压电驱动的火星岩石钻探器的研制 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.010
    [19] 傅惠民, 娄泰山, 肖强.  火星进入段探测器自校准状态估计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.03.006
    [20] 陈颖, 周璐, 王立.  一种火星多模式组合探测任务设想 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-01-25

“天问一号”着陆区遥感形貌建模与制图分析

    基金项目:  国家自然科学基金(42071324,42171363,41804166);上海市“科技创新行动计划”启明星项目(21QA1409100)
    作者简介:

    柳思聪(1986– ),副教授,博士生导师,主要研究方向:航天遥感智能信息处理理论方法与应用研究。通讯地址:上海市杨浦区四平路1239号同济大学测绘与地理信息学院(200092)电话:13641900580E-mail:sicong.liu@tongji.edu.cn

    童小华(1971– ),教授、副校长,博士生导师,主要研究方向:航天测绘遥感与深空探测。本文通讯作者。通讯地址:上海市杨浦区四平路1239号(200092)Email:xhtong@tongji.edu.cn

  • ● High-resolution terrain data of the Tianwen-1 landing area is made up by jointly use of the photogrammetry and the Shape from Shading (SFS) methods. ● Topography category and distribution of the land area is classified by using a deep learning network. ● The high-resolution terrain data made in this paper is highly consistent with NASA and CNSA developed DEM products. ● Results indicate that the overall terrain of the Tianwen-1 landing area is flat and the morphology category is relatively single, which meets the requirements of the probe's safe landing. ● The subsequent scientific exploration of Zhurong Mars Rover can be comprehensively considered in combination with multi-source high-resolution terrain data and topography classification results.

摘要: 综合利用火星轨道器多源遥感影像数据,构建了火星表面形貌精细建模与自动分类方法。 其中,结合摄影测量法与明暗恢复形状法(Shape From Shading,SFS)研究制作了“天问一号”着陆区域的高分辨率三维地形,并通过深度卷积神经网络对着陆区形貌类别及其分布进行分类分析。通过地形剖面分析的结果表明,所提出方法制作的高精度地形数据与美国国家航空航天局(National Aeronautics and Space Administration,NASA)及中国国家航天局(China National Space Administration,CNSA)发布的生成数字高程模型(Digital Elevation Model, DEM)产品高程误差均值分别为1.866 m和1.074 m,均具有较高一致性。此外,通过形貌及制图综合分析可以看出,着陆点附近坡度在3°以下、着陆点附近地表的起伏程度不大于30 cm,以此验证了“天问一号”着陆区整体地势平缓、形貌类别较单一,符合探测器安全着陆的需求。国产“天问一号”高分辨率相机数据制作的地形及分类结果可有效应用于着陆及巡视探测区的形貌特征分析,联合HiRISE等多源火星遥感数据,可为后续“祝融号”巡视器科学探测提供重要的基础数据和参考信息。

注释:
1)  ● High-resolution terrain data of the Tianwen-1 landing area is made up by jointly use of the photogrammetry and the Shape from Shading (SFS) methods. ● Topography category and distribution of the land area is classified by using a deep learning network. ● The high-resolution terrain data made in this paper is highly consistent with NASA and CNSA developed DEM products. ● Results indicate that the overall terrain of the Tianwen-1 landing area is flat and the morphology category is relatively single, which meets the requirements of the probe's safe landing. ● The subsequent scientific exploration of Zhurong Mars Rover can be comprehensively considered in combination with multi-source high-resolution terrain data and topography classification results.

English Abstract

柳思聪, 童小华, 刘世杰, 谢欢, 赵慧, 刘大永, 许雄, 叶真, 王超, 刘祥磊. “天问一号”着陆区遥感形貌建模与制图分析[J]. 深空探测学报(中英文).
引用本文: 柳思聪, 童小华, 刘世杰, 谢欢, 赵慧, 刘大永, 许雄, 叶真, 王超, 刘祥磊. “天问一号”着陆区遥感形貌建模与制图分析[J]. 深空探测学报(中英文).
LIU Sicong, TONG Xiaohua, LIU Shijie, XIE Huan, ZHAO Hui, LIU Dayong, XU Xiong, YE Zhen, WANG Chao, LIU Xianglei. Topography Modeling, Mapping and Analysis of the China’s First Mars Mission Tianwen-1 Landing Area from Remote Sensing Images[J]. Journal of Deep Space Exploration.
Citation: LIU Sicong, TONG Xiaohua, LIU Shijie, XIE Huan, ZHAO Hui, LIU Dayong, XU Xiong, YE Zhen, WANG Chao, LIU Xianglei. Topography Modeling, Mapping and Analysis of the China’s First Mars Mission Tianwen-1 Landing Area from Remote Sensing Images[J]. Journal of Deep Space Exploration.
参考文献 (33)

返回顶部

目录

    /

    返回文章
    返回