中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Seed and Vegetative Propagation of Plants in Microgravity

Elizabeth Kordyum Olena Hedukha Olga Artemeko Galyna Ivanenko

ElizabethKordyum, OlenaHedukha, OlgaArtemeko, GalynaIvanenko. 植物在微重力下的种子繁殖和营养繁殖[J]. 深空探测学报(中英文).
引用本文: ElizabethKordyum, OlenaHedukha, OlgaArtemeko, GalynaIvanenko. 植物在微重力下的种子繁殖和营养繁殖[J]. 深空探测学报(中英文).
Reference format: Elizabeth Kordyum, Olena Hedukha, Olga Artemeko, et al. [J]. Journal of Deep Space Exploration, 2020, 7 (5) : 1-8
Citation: Reference format: Elizabeth Kordyum, Olena Hedukha, Olga Artemeko, et al. [J]. Journal of Deep Space Exploration, 2020, 7 (5) : 1-8

植物在微重力下的种子繁殖和营养繁殖

Seed and Vegetative Propagation of Plants in Microgravity

  • 摘要: 简要回顾了在真实和模拟微重力下植物发育、种子到种子、后代、生殖和营养器官形成的现有数据。强调了植物空间生殖生物学的出现及其对空间农业发展的重要性,这是人类未来探索空间所必需的。
  • Fig.  1  French astronaut Jean-Loup Chrétien with orchids Dendrobium phalaenopsis on board the orbital station Salyut-7[7].

    Fig.  2  Brassica rapa (cv. Astroplants) with siliques after 15 days post pollination: a-in orbit (STS-87), b-ground control[15]

    Fig.  3  Cells of embryo roots from Brassica rapa (cv. Astroplants) premature seeds developed in the ground control (a) and in orbit (b). SG-starch grain, PB-protein body (original photos from A.F. Popova).

    Fig.  4  Brassica rapa (cv. Astroplants) embryos developed in the stationary control (a) and under clinorotation (b, c) (original photos from A.F. Popova).

    Fig.  5  Formation of minitubers of potato in orbit (a) and in the ground control (b). Arrows show the minitubers. Bar = 2.5 mm[34]

    Fig.  6  Amyloplasts in the storage parenchyma cells of minitubers formed in the ground (a) and in orbit (b). Arrows show dumb-bell amyloplasts. Bar = 3 µm[34]

  • [1] FERL R J, WHEELER R, LEVINE H G, et al. Plants in space[J]. Current opinion in plant biology,2002 (5) : 258-263.
    [2] WHEELER R M. Plants for human life support in space: from Myers to Mars[J]. Gravitational Space Biology,2010,23: 25-35.
    [3] WHEELER R M. Agriculture for space: people and places paving the way[J]. Open Agriculture,2017 (2) : 14-32.
    [4] FU Y, LI L, XIE B, et al. How to establish a bioregenerative life support system for long-term crewed missions to the Moon or Mars[J]. Astrobiology,2016,16 (12) : 925-936. doi:  10.1089/ast.2016.1477
    [5] VANDENBRINK J P, KISS J Z. Space, the final frontier: a critical review of recent experiments performed in microgravity[J]. Plant Science,2016,243: 115-119. doi:  10.1016/j.plantsci.2015.11.004
    [6] STANKOVIC B. Plants in Space. Into space - a journey of how humans adapt and live in microgravity[J]. 2018, P.351–404 doi: 10.5772/intechopen.74230.
    [7] KORDYUM E L. Space biology and medicine in Ukraine: history and prospects [J]. Science and Science of Science, 2016, 1: 87-110.(in Russian) URL: http://nbuv.gov.ua/UJRN/NNZ_2016_1_10
    [8] HALSTEAD T W, DUTCHER F R. Plants in space[J]. Annual Review of Plant Physiology,1987,38: 317-34. doi:  10.1146/annurev.pp.38.060187.001533
    [9] CLAASEN D E, SPOONER B S. Impact of altered gravity on aspects of cell biology[J]. International Review of Cytology,1994,156: 301-373. doi:  10.1016/S0074-7696(08)62257-3
    [10] KORDYUM E L. Biology of plant cells in microgravity and under clinostating[J]. International Review of Cytology,1997,171: 1-78. doi:  10.1016/S0074-7696(08)62585-1
    [11] PAUL A L, WHEELER R M, LEVINE H G, et al. Fundamental plant biology enabled by the space shuttle[J]. American Journal of Botany,2013a,100: 226-234. doi:  10.3732/ajb.1200338
    [12] HOSON T. Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space[J]. Life,2014,4 (2) : 205-216. doi:  10.3390/life4020205
    [13] KITTANG A I, IVERSEN T H, FOSSUM K R, et al. Exploration of plant growth and development using the European modular cultivation system facility on the International Space Station[J]. Plant Biology,2014,16 (3) : 528-538. doi:  10.1111/plb.12132
    [14] ZHENG H Q, FEI H, JIE L. Higher plants in space: microgravity perception, response, and adaptation[J]. Microgravity Science and Technology,2015,27: 377-386. doi:  10.1007/s12217-015-9428-y
    [15] KORDYUM E L, CHAPMAN D K. Plants and microgravity: Patterns of microgravity effects at the cellular and molecular levels[J]. Cytology and Genetics,2017,51: 108-116. doi:  10.3103/S0095452717020049
    [16] MERKYS A I, LAURINAVICHIUS R S. Full cycle of individual development of Arabidobsis theliana (L.) Heynh. plants on board the orbital station Salyut-7[J]. Reports of the USSR Academy of Sciences,1983,271: 509-512.
    [17] LINK B M, DURST S J, ZHOU W, et al. Seed-to-seed growth of Arabidopsis thaliana on the International Space Station[J]. Advances in Space Research,2003,31: 2237-2243. doi:  10.1016/S0273-1177(03)00250-3
    [18] LINK B M, JAMES S, BUSSE J S, et al. Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity[J]. Astrobiology,2014,14: 866-875. doi:  10.1089/ast.2014.1184
    [19] YANO S, KASAHARA H, MASUDA D, et al. Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station[J]. Advances in Space Research,2013,51: 780-788. doi:  10.1016/j.asr.2012.10.002
    [20] KORDYUM E L, CHAPMAN D K. Plants in Space[M]. Kyiv, UA: Akademperiodika, 2007.
    [21] MUSGRAVE M E, KUANG A, XIAO Y, et al. Gravity independence of seed-to-seed cycling in Brassica rapa[J]. Planta,2000,210: 400-406. doi:  10.1007/PL00008148
    [22] KUANG A, POPOVA A, XIAO Y, et al. Pollination and embryo development in Brassica rapa L. in microgravity[J]. International Journal of Plant Sciences,2000a,161: 203-211. doi:  10.1086/314254
    [23] KUANG A, XIAO Y, MCCLURE G, et al. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L[J]. Annals of Botany,2000b,85 (6) : 851-859. doi:  10.1006/anbo.2000.1153
    [24] KUANG A, POPOVA A, MCCLURE G, et al. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity[J]. International Journal of Plant Sciences,2005,166: 85-96. doi:  10.1086/425664
    [25] LEVINSKIKH M A, SYCHEV V N, SIGNALOVA O B, et al. Growth and development of plants in a sequence of generations under the conditions of space flight (experiment Greenhouse-3)[J]. Aviakosm Ekolog Med,2001,35: 43-48.
    [26] SYCHEV V N, SHEPELEV E Y, MELESHKO G I, et al. Main characteristics of biological components of developing life support system observed during the experiments aboard orbital complex Mir[J]. Advances in Space Research,2001,27: 1529-1534. doi:  10.1016/S0273-1177(01)00245-9
    [27] VESELOVA T D, ILYINA G M, DJALILOVA T T. Cytoembriological investigations of super dwarf wheat grown on board the orbital station Mir[J]. Aviakosm Ekolog Med,1999,33 (2) : 30-37.
    [28] LEVINSKIKH M A, SYCHEV V N, DERENDIAEVA T A, et al. Growth of wheat from seed-to-seed in space flight[J]. Aviakosm Ekolog Med,2000,34: 44-49.
    [29] SYCHEV V N, LEVINSKIKH M A, GOSTIMSKY S A, et al. Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station[J]. Acta Astronautica,2007,60: 426-432. doi:  10.1016/j.actaastro.2006.09.009
    [30] POPOVA A, KUANG A, MCCLURE G, et al. Reserve nutrient substance accumulation in Brassica rapa L. seeds in microgravity conditions (STS-87)[J]. Journal of Gravitational Physiology,2002,9 (1) : 237-238.
    [31] MUSGRAVE M E, KUANG A, TUOMINEN L K, et al. Seed storage reserves and glucosinolates in Brassica rapa L. grown on the International Space Station[J]. Journal of the American Society for Horticultural Science,2005,130: 818-856.
    [32] POPOVA A F, IVANENKO G F. Embryo development of Brassica rapa L. under clinorotation[J]. Space Science Technology,2003,9: 41-43.
    [33] KORDYUM E L, NEDUKHA E M, NECHITAILI G S. Structural-functional organization of storage parenchyma cells of Solanum tuberosum minitubers formed under space flight, AIAA 31707-526[R]. Washington, DC: World Space Congress Press, 1992.
    [34] KORDYUM E, BARANENKO V, NEDUKHA O, et al. Development of potato minitubers in microgravity[J]. Plant Cell Physiology,1997,38: 1111-1117. doi:  10.1093/oxfordjournals.pcp.a029095
    [35] BROWN C S, TIBBITTS T W, CROXDALE J G, et al. Potato tuber formation in the spaceflight environment[J]. Life support & biosphere science,1997,4 (1-2) : 71-76.
    [36] CROXDALE J, COOK M, TIBBITTS T W, et al. Structure of potato tubers formed during spaceflight[J]. Journal of Experimental Botany,1997,48 (317) : 2037-2043. doi:  10.1093/jexbot/48.317.2037
    [37] COOK M E, CROXDALE J L, TIBBITTS T W, et al. Development and growth of potato tubers in microgravity[J]. Advances in Space Research,1998,21 (8-9) : 1103-1110. doi:  10.1016/S0273-1177(97)00197-X
    [38] COOK M E, CROXDALE J G. Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions[J]. Journal of Experimental Botany,2003,54 (390) : 2157-2164. doi:  10.1093/jxb/erg218
    [39] MORTLEY D G, CONRAD K B, WALTER A H, et al. Iinfluence of microgravity environment on root growth, soluble sugars, and starch concentration of sweet potato stem cuttings[J]. Journal of the American Society for Horticultural Science,2008,133 (3) : 327-332. doi:  10.21273/JASHS.133.3.327
    [40] NEDUKHA O M, KORDYUM E L, SCHNYUKOVA E I. The influence of imitated microgravity on amyloplast structure, the composition and characteristics of potato minitubers[J]. Space Science and Technology,2007,13: 62-68.
    [41] SINGH N, INOUCHI N, NISHINARI K. Structure and viscoelastic characteristics of starches separated from normal, sugary and waxy maize[J]. Food Hydrocolloids,2006,20: 923-935. doi:  10.1016/j.foodhyd.2005.09.009
    [42] TESTER R, KARKALAS J, QI X. Starch structure and digestibility of an enzyme-substrate relationship[J]. World's Poultry Science Journal,2004,60: 186-195. doi:  10.1079/WPS20040014
    [43] WANG H, ZHENG H Q, SHA W, et al. A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation[J]. Journal of Experimental Botany,2006,57: 827-835. doi:  10.1093/jxb/erj066
    [44] PAUL A L, ZUPANSKA A K, OSTROW D T, et al. Spaceflight transcriptomes: Unique responses to a novel environment[J]. Astrobiology,2012,12: 40-56. doi:  10.1089/ast.2011.0696
    [45] CORRELL M J, PYLE T P, MILLAR K D, et al. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes[J]. Planta,2013,238 (3) : 519-533. doi:  10.1007/s00425-013-1909-x
    [46] XU D, GUO S, LIU M. Identification of miRNAs involved in longterm simulated microgravity response in Solanum lycopersicum[J]. Plant Physiology and Biochemistry,2013,66: 10-19. doi:  10.1016/j.plaphy.2013.01.021
    [47] ZHANG Y, WANG L, XIE J, et al. Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft[J]. Planta,2015,241: 475-488. doi:  10.1007/s00425-014-2196-x
    [48] KWON T, SPARKS J A, NAKASHIMA J, et al. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development[J]. American Journal of Botany,2015,102 (1) : 21-35. doi:  10.3732/ajb.1400458
    [49] PAUL A L, ZUPANSKA A K, SCHULTZ E, et al. Organ-specific remodeling of the Arabidopsis transcriptome in response to space flight[J]. BMC Plant Biology,2013b,13: 112. doi:  10.1186/1471-2229-13-112
    [50] FERL R J, KOH J, DENISON F, et al. Spaceflight induces specific alterations in the proteomes of Arabidopsis[J]. Astrobiology,2015,15 (1) : 32-56. doi:  10.1089/ast.2014.1210
    [51] JIANG L, ROGERS J C. (2003) Sorting of lytic enzymes in the plant Golgi apparatus. Annual Plant Review, 9, 114-140Brown C S, Hilaire E M, Guikema J A, et al. Soybean seedling growth, ultrastructure, and carbohydrate metabolism in microgravity[J]. Plant Physiology, 1995, 108(2): 31.
    [52] KUMAMARU T, OGAWA M, SATOH H, et al. Protein body biogenesis in cereal endosperms[M]. Olsen: Endosperm Springer-Verlag Berlin Heidelberg, 2007.
    [53] CUI Y, SHEN J, GAO C, et al. Biogenesis of plant prevacuolar multivesicular bodies[J]. Molecular Plant,2016,9 (6) : 774-786. doi:  10.1016/j.molp.2016.01.011
    [54] TIBBITTS T W, ALFORD D K. Controlled ecological life support system. Use of higher plants: CP-223[R]. USA: NASA Conference Publication, 1982.
    [55] KHUDYAK M I. Endosperm of angiosperm plants[M]. Kyiv, UA: Naukova Dumka, 1963. (in Russian)
    [56] LOPES M A, LARKINS B. Endosperm origin, development, and function[J]. The Plant Cell,1993,5 (10) : 1383-1399.
    [57] GROSSNIKLAUS U. Genomic imprinting in plants: a predominantly maternal affair[J]. Plant Epigenetics Blackwell Publishing, Sheffield,2005: 174-200.
    [58] RAISSIG M T, BAROUX C, GROSSNIKLAUS U. Regulation and flexibility of genomic imprinting during seed development[J]. Plant Cell,2011,23 (1) : 16-26. doi:  10.1105/tpc.110.081018
    [59] GEHRING M, SATYAKI P R. Endosperm and Imprinting, Inextricably Linked[J]. Plant Physiology,2017,173: 143-154. doi:  10.1104/pp.16.01353
  • 加载中
计量
  • 文章访问数:  12
  • 被引次数: 0
出版历程

Seed and Vegetative Propagation of Plants in Microgravity

摘要: 简要回顾了在真实和模拟微重力下植物发育、种子到种子、后代、生殖和营养器官形成的现有数据。强调了植物空间生殖生物学的出现及其对空间农业发展的重要性,这是人类未来探索空间所必需的。

English Abstract

ElizabethKordyum, OlenaHedukha, OlgaArtemeko, GalynaIvanenko. 植物在微重力下的种子繁殖和营养繁殖[J]. 深空探测学报(中英文).
引用本文: ElizabethKordyum, OlenaHedukha, OlgaArtemeko, GalynaIvanenko. 植物在微重力下的种子繁殖和营养繁殖[J]. 深空探测学报(中英文).
Reference format: Elizabeth Kordyum, Olena Hedukha, Olga Artemeko, et al. [J]. Journal of Deep Space Exploration, 2020, 7 (5) : 1-8
Citation: Reference format: Elizabeth Kordyum, Olena Hedukha, Olga Artemeko, et al. [J]. Journal of Deep Space Exploration, 2020, 7 (5) : 1-8
参考文献 (59)

返回顶部

目录

    /

    返回文章
    返回