中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月表太阳风和粒子辐射环境—“嫦娥四号”观测新结果

王赤 李磊 张爱兵 张珅毅 侯东辉 徐子贡 谢良海 王慧姿 罗朋威 郭静楠 史全岐 张小平

王赤, 李磊, 张爱兵, 张珅毅, 侯东辉, 徐子贡, 谢良海, 王慧姿, 罗朋威, 郭静楠, 史全岐, 张小平. 月表太阳风和粒子辐射环境—“嫦娥四号”观测新结果[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20220020
引用本文: 王赤, 李磊, 张爱兵, 张珅毅, 侯东辉, 徐子贡, 谢良海, 王慧姿, 罗朋威, 郭静楠, 史全岐, 张小平. 月表太阳风和粒子辐射环境—“嫦娥四号”观测新结果[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20220020
WANG Chi, LI Lei, ZHANG Aibing, ZHANG Shenyi, HOU Donghui, XU Zigong, XIE Lianghai, WANG Huizi, LUO Pengwei, GUO Jingnan, SHI Quanqi, ZHANG Xiaoping. The Solar Wind and Particle Radiation Environment on the Surface of the Moon—New Observations from Chang’E-4[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20220020
Citation: WANG Chi, LI Lei, ZHANG Aibing, ZHANG Shenyi, HOU Donghui, XU Zigong, XIE Lianghai, WANG Huizi, LUO Pengwei, GUO Jingnan, SHI Quanqi, ZHANG Xiaoping. The Solar Wind and Particle Radiation Environment on the Surface of the Moon—New Observations from Chang’E-4[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20220020

月表太阳风和粒子辐射环境—“嫦娥四号”观测新结果

doi: 10.15982/j.issn.2096-9287.2022.20220020
基金项目: 国家重点研发计划资助项目(2020YFE0202100);中国科学院重点部署项目(ZDRW-KT-2019-5);国家自然科学基金(41941001,42174216)
详细信息
    作者简介:

    王赤(1967– ),男,中国科学院院士,主要研究方向:空间物理。通讯地址:北京中关村南二条1号(100190)电话:(010)62576921E-mail:cw@spaceweather.ac.cn

  • ● Chang’E-4 carried out first time in situ measurements of ENA and particle ration environment on the lunar surface ● Observations reveal that low energy (<100 eV) ENA has high flux; while 100-600eV ENA flux exhibits linear correlation with the solar wind parameters. Thus reduced ENA flux in the afternoon section (lunar local time) suggests the surface might be partly shielded by the mini-magnetosphere formed over the Imbrium antipodal magnetic anomalies. The solar wind penetration into the mini-magnetosphere depends on the inertial length of solar wind protons. ● The lunar surface radiation parameters and their variations over time are measured, supplying valuable information for lunar surface mission design. The lunar surface does not affect the galactic ray spectrum under quiet solar conditions, while the neutral components, resulting from galactic ray and solar energetic particle interaction with the lunar regolith, contributes ~23 % to the lunar surface radiation.
  • 中图分类号: P142

The Solar Wind and Particle Radiation Environment on the Surface of the Moon—New Observations from Chang’E-4

  • 摘要: 太阳风、太阳高能粒子、银河宇宙线几乎可以无阻碍地到达月面,与月表发生相互作用。太阳风粒子以能量中性原子的形式被月壤散射的过程与太阳风状态、月表电磁环境、局部地形、月壤特性等因素均有关系;银河宇宙射线、太阳高能粒子与月壤相互作用产生以中子和伽马射线为主的反照辐射,形成特殊的月表粒子辐射环境。介绍了“嫦娥四号”首次在月球背面原位所测量的能量中性原子、粒子辐射环境,分析了月面ENA的能谱等特性、月球微磁层存在的观测证据及月面辐射环境的构成及其随时间的变化。结果表明月表能量中性原子观测为认识太阳风与月球的相互作用,这为研究月球微磁层内部结构及成因提供了新的视角;而月面辐射环境的测量为未来月球探测中航天员和设备的安全保障提供了重要依据。
    Highlights
    ● Chang’E-4 carried out first time in situ measurements of ENA and particle ration environment on the lunar surface ● Observations reveal that low energy (<100 eV) ENA has high flux; while 100-600eV ENA flux exhibits linear correlation with the solar wind parameters. Thus reduced ENA flux in the afternoon section (lunar local time) suggests the surface might be partly shielded by the mini-magnetosphere formed over the Imbrium antipodal magnetic anomalies. The solar wind penetration into the mini-magnetosphere depends on the inertial length of solar wind protons. ● The lunar surface radiation parameters and their variations over time are measured, supplying valuable information for lunar surface mission design. The lunar surface does not affect the galactic ray spectrum under quiet solar conditions, while the neutral components, resulting from galactic ray and solar energetic particle interaction with the lunar regolith, contributes ~23 % to the lunar surface radiation.
  • 图  1  中性原子探测仪传感器工作原理[14]

    注:①离子偏转系统;②电荷转换面;③静电分析器;④飞行时间单元:由⑤起始、⑥终止面、⑦起始电子倍增器、⑧终止电子倍增器组成。

    Fig.  1  Advanced Small Analyzer for Neutrals sensor optics[14]

    图  2  “玉兔二号”上的中性原子探测仪[15]

    Fig.  2  ASAN on Yutu-2 rover[15]

    图  3  ENA能谱,相对于太阳风能量(Esw)和通量作了归一化[15] Fig. 3 ENA energy spectrums, normalized by the solar wind energy (Esw) and flux[15]

    注:黑色实心圆: 2019/5/UTC 06:18~10:45 ASAN观测的ENA能谱;垂直误差棒:对应90%的置信区间 (C.I.);水平误差棒:对应能谱响应的半高宽虚线为90%置信区间,在这个区间之下ASAN有效信号将无法与噪声区分;空心菱形: Chandrayaan-1的氢ENA能谱[5];空心正方形:IBEX的氢ENA能谱[6]

    图  4  月球地方时上午(红)和下午(蓝)时段,能量高于100 eV的ENA通量随未扰动太阳风月表法向通量的变化[17] 及ASAN观测结果

    Fig.  4  ENA flux variation with the undisturbed solar wind normal incidence flux[17], measured by ASAN in mornings (red) and afternoons (blue), lunar local time

    图  5  “嫦娥四号”着陆点周围的磁场大小分布[17]

    Fig.  5  Magnetic field strength around the landing site of Chang’E-4

    图  6  太阳风与月球相互作用Hall-MHD模拟结果

    Fig.  6  Solar wind interacts with the Moon, simulated by the Hall-MHD model[17].

    图  7  ASAN观测结果[16]

    Fig.  7  Results based on ASAN observations[16]

    图  8  上午时段(红)和下午时段(蓝)太阳风能量与ENA截止能量的关系[16]

    Fig.  8  ENA cut-off energy as a function of the solar wind energy in mornings (red) and afternoons(blue) [16]

    图  9  月表中子与辐射剂量探测仪[21]

    Fig.  9  Lunar Neutron and radiation detector[21]

    图  10  “嫦娥四号”着陆后前两个月昼LND测量的月球辐射环境随时间的变化[26]

    Fig.  10  Temporal variation of the lunar radiation environment within the first two lunar days after Landing of Chang’e-4[26]

    图  11  线性能量转移谱(LET,已转化到水中LET)[26]

    Fig.  11  LET spectrum (converted to LET in water)[26]

    图  12  LDN对宇宙线各组成分的通量测量与近地航天器观测结果的比值平均值(紫色)[27]; LDN对宇宙线各组成分的通量测量与CRÈME模型预测值的比值平均值[28-29](绿色对应CRÈME96,橙色对应CRÈME2009);红色虚线表示比值为1.0

    Fig.  12  Averaged ratio of GCR compositions from LND, to those from the near Earth spacecrafts (magenta) [27], and model predictions [28-29] (Green CRÈME96, orange CRÈME2009). Red dashed line marks the ratio of 1.0.

    图  13  太阳质子爆发期间辐射剂量的变化情况[30]

    Fig.  13  Radiation changes in the solar energetic particle events

    图  14  粒子事件开始的时间和粒子能量的关系[31]

    Fig.  14  The start time of the SEP event is related with the particle energy[31]

    表  1  月球表面剂量率(µGy/h)测量结果汇总[16]

    Table  1  Summery of dose rates(µGy/h) measured on the lunar surface. Systematic errors caused by RTG/RHUs have be removed[16] from the results.

    剂量率/(µGy·h−1测量值本底最终结果(硅)
    总剂量18.4 ±0.45.2 ± 0.613.2 ± 0.7
    中性粒子剂量4.7 ± 0.11.7 ± 0.53.1 ± 0.5
    带电粒子剂量13.7 ±0.43.5 ± 0.810.2 ± 0.9
    下载: 导出CSV
  • [1] WANG X D,BIAN W,WANG J S,et al. Acceleration of scattered solar wind protons at the polar terminator of the Moon:results from Chang’E‐1/SWIDs[J]. Geophys. Res. Lett.,2010,37:L07203.
    [2] SAITO Y,YOKOTA S,TANAKA T,et al. Solar wind proton reflection at the lunar surface:low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA)[J]. Geophysical Research Letters,2008,35(24):L24205. doi:  10.1029/2008GL036077
    [3] SCHAUFELBERGER A,WURZ P,BARABASH S,et al. Scattering function for energetic neutral hydrogen atoms off the lunar surface[J]. Geophysical Research Letters,2011,38(22):L22202.
    [4] WIESER M,BARABASH S,FUTAANA Y,et al. Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space[J]. Planetary and Space Science,2009,57(14/15):2132-2134.
    [5] FUTAANA Y,BARABASH S,WIESER M,et al. Empirical energy spectra of neutralized solar wind protons from the lunar regolith[J]. Journal of Geophysical Research:Planets,2012,117(E5):E05005.
    [6] ALLEGRINI F,DAYEH M A,DESAI M I. Lunar Energetic Neutral Atom (ENA) spectra measured by the Interstellar Boundary EXplorer (IBEX)[J]. Planetary and Space Science,2013,85:232-242. doi:  10.1016/j.pss.2013.06.014
    [7] VORBURGER A,WURZ P,BARABASH S,et al. Energetic neutral atom imaging of the lunar surface[J]. Journal of Geophysical Research:Space Physics,2013,118(7):3937-3945. doi:  10.1002/jgra.50337
    [8] FUNSTEN H O,ALLEGRINI F,BOCHSLER P A,et al. Reflection of solar wind hydrogen from the lunar surface[J]. Journal of Geophysical Research:Planets,2013,118(2):292-305.
    [9] WURZ P,ROHNER U,WHITBY J A,et al. The lunar exosphere:the sputtering contribution[J]. Icarus,2007,191(2):486-496. doi:  10.1016/j.icarus.2007.04.034
    [10] VORBURGER A,WURZ P,BARABASH S,et al. Energetic neutral atom observations of magnetic anomalies on the lunar surface[J]. Journal of Geophysical Research:Space Physics,2012,117(A7):A07208.
    [11] WIESER M,BARABASH S,FUTAANA Y,et al. First observation of a mini-magnetosphere above a lunar magnetic anomaly using energetic neutral atoms[J]. Geophysical Research Letters,2010,37(5):L05103.
    [12] LIN R P,MITCHELL D L,CURTIS D W,et al. Lunar surface magnetic fields and their interaction with the solar wind:results from lunar prospector[J]. Science,1998,281(5382):1480-1484. doi:  10.1126/science.281.5382.1480
    [13] HALEKAS J S,DELORY G T,BRAIN D A,et al. Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind:a mini-magnetosphere?[J]. Planetary and Space Science,2008,56(7):941-946. doi:  10.1016/j.pss.2008.01.008
    [14] WIESER M,BARABASH S,WANG X D,et al. The Advanced Small Analyzer for Neutrals (ASAN) on the Chang’E-4 rover Yutu-2[J]. Space Science Reviews,2020,216:73-75. doi:  10.1007/s11214-020-00691-w
    [15] ZHANG A D,WIESERE M,WANG C,et al. Emission of energetic neutral atoms measured on the lunar surface by Chang’E-4[J]. Planetary and Space Science,2020,189:104970. doi:  10.1016/j.pss.2020.104970
    [16] WANG H Z,XIAO C,SHI Q Q,et al. Energetic neutral atoms distribution on the lunar surface and its relationship with solar wind conditions[J]. The Astrophysical Journal Letters,2021,922(2):L41. doi:  10.3847/2041-8213/ac34f3
    [17] XIE L,LI L,ZHANG A,et al. Inside a lunar mini-magnetosphere:first energetic neutral atom measurements on the lunar surface[J]. Geophysical Research Letters,2021,48:e2021GL093943.
    [18] MITCHELL D L,HALEKAS J S,LIN R P,et al. Global mapping of lunar crustal magnetic fields by lunar prospector[J]. Icarus,2008,194(2):401-409. doi:  10.1016/j.icarus.2007.10.027
    [19] XIE L H,LI L,ZHANG Y T,et al. Three-dimensional hall MHD simulation of lunar minimagnetosphere:general characteristics and comparison with Chang'E-2 observations[J]. Journal of Geophysical Research:Space Physics,2015,120(8):6559-6568. doi:  10.1002/2015JA021647
    [20] SAITO Y,NISHINO M N,FUJIMOTO M,et al. Simultaneous observation of the electron acceleration and ion deceleration over lunar magnetic anomalies[J]. Earth,Planets and Space,2012,64(2):4-9.
    [21] WIMMER-SCHWEINGRUBER R F,YU J,BTTCHER S I,et al. The Lunar Lander Neutron and Dosimetry (LND) experiment on Chang’E 4[J]. Space Science Review,2020,216:104. doi:  10.1007/s11214-020-00725-3
    [22] 王馨悦,荆涛,张珅毅,等. “嫦娥一号”卫星太阳高能粒子探测器的首次观测结果[J]. 地球物理学进展,2012,27(6):2289-2295. doi:  10.6038/j.issn.1004-2903.2012.06.003

    WANG X Y, JING T, ZHANG S Y, et al. The first results of Chang'e-1 high energetic particles detector[J]. Progress in Geophysics,2012,27(6):2289-2295. doi:  10.6038/j.issn.1004-2903.2012.06.003
    [23] DACHEV T P, TOMOV B T, MATVIICHUK Y N, et al. An overview of RADOM results for Earth and Moon radiation environment on Chandrayaan-1 satellite Adv[J]. Space Res. 2011, 48: 779.
    [24] SPENCE H E,CASE A W,GOLIGHTLY M J,et al. CRaTER:the cosmic ray telescope for the effects of radiation experiment on the lunar reconnaissance orbiter mission[J]. Space Sci Rev.,2010,150:243-284. doi:  10.1007/s11214-009-9584-8
    [25] HOU D H,ZHANG S,YU J,et al. Removing the dose background from radioactive sources from active dose rate measurements in the Lunar Lander Neutron & Dosimetry (LND) experiment on the Chang'E 4[J]. Journal of Instrument,2020,15:P02032. doi:  10.1088/1748-0221/15/02/C02032
    [26] QUAN Z,WIMMER-SCHWEINGRUBER R F,KULKARNI S R,et al. First measurements of the radiation dose on the lunar surface[J]. Science advances,2020(6):39-45.
    [27] LUO P W,ZHANG X P. First Measurements of low energy cosmic rays on the surface of the lunar far side from Chang'E-4 mission[J]. Science Advances,2022,8(2):1760. doi:  10.1126/sciadv.abk1760
    [28] TYLKA A J. CREME96:a revision of the cosmic ray effects on micro-electronics code[J]. Ieee Transactions on Nuclear Science,1997,44:2150-2160. doi:  10.1109/23.659030
    [29] ADAMS J H. CREME:the 2011 revision of the cosmic ray effects on micro-electronics code[J]. Ieee Transactions on Nuclear Science,2021,59:3141-3147.
    [30] XU Z G,GUO J N,WIMMER-SCHWEINGRUBER R F,et al. First solar energetic particles measured on the lunar far-side[J]. The Astrophysical Journal Letters,2020,902:L30. doi:  10.3847/2041-8213/abbccc
    [31] 张坤毅,侯东辉,WIMMER-SCHWEINGRUBER R F,等. LND两年月表辐射剂量测量结果[J]. 空间科学学报,2021(3):439-444.

    ZHANG SY, HOU D H, WIMMER-SCHWEINGRUBER R F, et al. Radiation dose of LND on the lunar surface in two years[J]. Chinese Journal of Space Science,2021(3):439-444.
  • [1] 黄靖, 郭华东, 刘广, 邓玉.  基于月基观测几何的地球辐射能量模拟研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210078
    [2] 刘奇祺, 陈楠, 林偲蔚.  月表可照时间谱和太阳辐射谱空间分布特征研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210100
    [3] 王明远, 王美, 平劲松, 韩松涛.  月球空间环境研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20200013
    [4] 陈上上, 关轶峰, 于萍, 李骥, 张晓文.  基于粒子群优化的月球陨石坑探测轨迹规划 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191031007
    [5] 钟武烨, 赵守智, 郑剑平, 吕征, 解家春.  空间热离子能量转换技术发展综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20200114001
    [6] 王玲华, 宗秋刚, 任杰.  太阳系边际的能量粒子探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200061
    [7] 宗秋刚, 任杰, 何建森, 王玲华.  从地球磁层到外日球层及以远区域探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200063
    [8] 许心铭, 胡大伟, 付玉明, 张金晖, 刘红.  低剂量电离辐射环境下微生物群落物种多样性的产生和维持机制 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.005
    [9] 敖先志, 刘四清, 沈华, 王晶晶, 胡骏翔, 李刚.  2 AU以内的“渐进型”太阳高能粒子事件模拟 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.007
    [10] 王赤, 张贤国, 徐欣锋, 孙越强.  中国月球及深空空间环境探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.001
    [11] 王馨悦, 张爱兵, 荆涛, 孔令高, 张珅毅.  近月空间带电粒子环境——“嫦娥1号”“嫦娥2号”观测结果 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.002
    [12] 杨涛, 邵志杰, 蔡明辉, 贾鑫禹, 韩建伟.  空间高能粒子与器件布线层核反应后次级粒子LET分布研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.009
    [13] 孔令高, 张爱兵, 田峥, 郑香脂, 王文静, 刘勇, 丁建京.  自主火星探测高集成离子与中性粒子分析仪 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.005
    [14] 侯东辉, 张珅毅, RobertFWimmer-Schweingruber, 于佳, SoenkeBurmeister, 沈国红, 袁斌, 王春琴, 张斌全.  月球粒子辐射环境探测现状 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.003
    [15] 张吉栋, 孟治国, 朱蕴哲, 曾昭发, 平劲松.  基于LOLA数据的冯·卡门撞击坑太阳辐射研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.01.002
    [16] 韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛.  脉冲激光模拟空间载荷单粒子效应研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.12.012
    [17] 陆璇辉, 曾大吉, 章显, 黄凯凯.  冷原子干涉重力仪在深空环境下的微重力探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.01.003
    [18] 沈自才, 代巍, 白羽, 刘荣强, 丁义刚, 刘业楠.  载人深空探测任务的空间环境工程关键问题 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.001
    [19] 贺晶, 龚胜平, 李俊峰.  利用逃逸能量的太阳帆最快交会轨迹优化 . 深空探测学报(中英文),
    [20] 孟治国, 平劲松, AlexanderGUSEV, 蔡占川, 陈思.  基于CELMS数据的月球东海微波辐射特性研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.03.009
  • 加载中
计量
  • 文章访问数:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-05-17
  • 网络出版日期:  2022-06-06

月表太阳风和粒子辐射环境—“嫦娥四号”观测新结果

doi: 10.15982/j.issn.2096-9287.2022.20220020
    基金项目:  国家重点研发计划资助项目(2020YFE0202100);中国科学院重点部署项目(ZDRW-KT-2019-5);国家自然科学基金(41941001,42174216)
    作者简介:

    王赤(1967– ),男,中国科学院院士,主要研究方向:空间物理。通讯地址:北京中关村南二条1号(100190)电话:(010)62576921E-mail:cw@spaceweather.ac.cn

  • ● Chang’E-4 carried out first time in situ measurements of ENA and particle ration environment on the lunar surface ● Observations reveal that low energy (<100 eV) ENA has high flux; while 100-600eV ENA flux exhibits linear correlation with the solar wind parameters. Thus reduced ENA flux in the afternoon section (lunar local time) suggests the surface might be partly shielded by the mini-magnetosphere formed over the Imbrium antipodal magnetic anomalies. The solar wind penetration into the mini-magnetosphere depends on the inertial length of solar wind protons. ● The lunar surface radiation parameters and their variations over time are measured, supplying valuable information for lunar surface mission design. The lunar surface does not affect the galactic ray spectrum under quiet solar conditions, while the neutral components, resulting from galactic ray and solar energetic particle interaction with the lunar regolith, contributes ~23 % to the lunar surface radiation.
  • 中图分类号: P142

摘要: 太阳风、太阳高能粒子、银河宇宙线几乎可以无阻碍地到达月面,与月表发生相互作用。太阳风粒子以能量中性原子的形式被月壤散射的过程与太阳风状态、月表电磁环境、局部地形、月壤特性等因素均有关系;银河宇宙射线、太阳高能粒子与月壤相互作用产生以中子和伽马射线为主的反照辐射,形成特殊的月表粒子辐射环境。介绍了“嫦娥四号”首次在月球背面原位所测量的能量中性原子、粒子辐射环境,分析了月面ENA的能谱等特性、月球微磁层存在的观测证据及月面辐射环境的构成及其随时间的变化。结果表明月表能量中性原子观测为认识太阳风与月球的相互作用,这为研究月球微磁层内部结构及成因提供了新的视角;而月面辐射环境的测量为未来月球探测中航天员和设备的安全保障提供了重要依据。

注释:
1)  ● Chang’E-4 carried out first time in situ measurements of ENA and particle ration environment on the lunar surface ● Observations reveal that low energy (<100 eV) ENA has high flux; while 100-600eV ENA flux exhibits linear correlation with the solar wind parameters. Thus reduced ENA flux in the afternoon section (lunar local time) suggests the surface might be partly shielded by the mini-magnetosphere formed over the Imbrium antipodal magnetic anomalies. The solar wind penetration into the mini-magnetosphere depends on the inertial length of solar wind protons. ● The lunar surface radiation parameters and their variations over time are measured, supplying valuable information for lunar surface mission design. The lunar surface does not affect the galactic ray spectrum under quiet solar conditions, while the neutral components, resulting from galactic ray and solar energetic particle interaction with the lunar regolith, contributes ~23 % to the lunar surface radiation.

English Abstract

王赤, 李磊, 张爱兵, 张珅毅, 侯东辉, 徐子贡, 谢良海, 王慧姿, 罗朋威, 郭静楠, 史全岐, 张小平. 月表太阳风和粒子辐射环境—“嫦娥四号”观测新结果[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20220020
引用本文: 王赤, 李磊, 张爱兵, 张珅毅, 侯东辉, 徐子贡, 谢良海, 王慧姿, 罗朋威, 郭静楠, 史全岐, 张小平. 月表太阳风和粒子辐射环境—“嫦娥四号”观测新结果[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20220020
WANG Chi, LI Lei, ZHANG Aibing, ZHANG Shenyi, HOU Donghui, XU Zigong, XIE Lianghai, WANG Huizi, LUO Pengwei, GUO Jingnan, SHI Quanqi, ZHANG Xiaoping. The Solar Wind and Particle Radiation Environment on the Surface of the Moon—New Observations from Chang’E-4[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20220020
Citation: WANG Chi, LI Lei, ZHANG Aibing, ZHANG Shenyi, HOU Donghui, XU Zigong, XIE Lianghai, WANG Huizi, LUO Pengwei, GUO Jingnan, SHI Quanqi, ZHANG Xiaoping. The Solar Wind and Particle Radiation Environment on the Surface of the Moon—New Observations from Chang’E-4[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20220020
参考文献 (31)

返回顶部

目录

    /

    返回文章
    返回