Topography Modeling, Mapping and Analysis of China’s First Mars Mission Tianwen-1 Landing Area from Remote Sensing Images
-
摘要: 综合利用火星轨道器多源遥感影像数据,构建了火星表面形貌精细建模与自动分类方法。 其中,结合摄影测量法与明暗恢复形状法(Shape From Shading,SFS)研究制作了“天问一号”着陆区域的高分辨率三维地形,并通过深度卷积神经网络对着陆区形貌类别及其分布进行分类分析。通过地形剖面分析的结果表明,所提出方法制作的高精度地形数据与中、美两国已发布的火星高分辨率数字高程模型(Digital Elevation Model,DEM)产品相比,高程误差均值分别为1.866 m和1.074 m,均具有较高一致性。此外,通过形貌及制图综合分析可以看出,着陆点附近坡度在3°以下,着陆点附近地表的起伏程度不大于30 cm,以此验证了“天问一号”着陆区整体地势平缓、形貌类别较单一,符合探测器安全着陆的需求。国产“天问一号”高分辨率相机数据制作的地形及分类结果可有效应用于着陆及巡视探测区的形貌特征分析,联合HiRISE等多源火星遥感数据,可为后续“祝融号”巡视器科学探测提供重要的基础数据和参考信息。Abstract: By using multi-source remote sensing image data from Mars Orbiters, the technical framework for Martian surface topography fine 3D modeling and automatic classification was developed. The high-resolution terrain of Tianwen-1 landing area was made by combining the photogrammetry and the Shape-from-Shading (SFS) methods, and high-resolution images were used to classify and analyze the topography category and distribution of the land area using a deep convolution neural network. The profile analysis results show that the high-precision terrain data presented in this paper are highly consistent with high resolution digital elevation model (DEM) products published by China and US, resulting in the mean elevation errors equal to 1.866m and 1.074m, respectively. Furthermore, it can be seen from the comprehensive terrain and morphology analysis by using the orbiter remote sensing images that near the landing point the slope is less than 3° and the fluctuation of the surface is less than 30cm. This indicates that the overall terrain of Tianwen-1 landing area is flat and the morphology category is relatively single, which meets the requirements of the probe’s safe landing. The terrain produced by Tianwen-1 high-resolution camera data and classification results, which can be effectively applied to the morphological analysis of the landing and patrol areas, when combined with multi-source Mars remote sensing data such as HiRISE, can provide important basic data and reference information for subsequent scientific explorations of Zhurong patrol.
-
Key words:
- Tianwen-1 /
- Mars exploration /
- terrain production /
- topography classification /
- HiRISE /
- HiRIC
Highlights● High-resolution terrain data of Tianwen-1 landing area is made by jointly using the photogrammetry and the Shape from Shading (SFS) methods. ● Topography category and distribution of the landing area is classified by using a deep convolution neural network. ● The high-resolution terrain data made in this paper is highly consistent with NASA and CNSA developed DEM products. ● Results indicate that the overall terrain of Tianwen-1 landing area is flat and the morphology category is relatively single, which meets the requirements of the probe’s safe landing. ● Subsequent scientific explorations of Zhurong Mars Rover can be comprehensively considered by using multi-source high-resolution terrain data and topography classification results. -
表 1 HiRISE和HiRIC相关参数
Table 1 Related parameters of HiRISE and HiRIC instruments
参数 HiRISE HiRIC 地面采样距离/(cm·像素-1) 30(300 km高度处) 50(265 km高度处) 光谱范围/μm 蓝绿0.4~0.6,红0.55~0.85,近红外0.8~1.0 蓝0.45~0.52、绿0.52~0.60、红0.63~0.69、近红0.76~0.90、全色0.45~0.9 视场角/(°) 1.14×0.18 2×0.693 焦距/mm 11 994.998 8 4 640 像素间距/μm 12 8.75(全色)、35(多光谱) 表 2 数据描述及训练样本个数
Table 2 Data description and number of training samples
轨道器影像 分辨率/m 图像大小/像素 训练样本数/像素 光滑风化层 粗糙表面 沙丘 HiRISE(美国) 0.25 2 979×5 602 89 700 46 112 88 214 HiRIC(中国) 0.70 7 448×6 723 101 703 46 521 28 942 -
[1] SQUYRES S W,GROTZINGER J P,ARVIDSON R E,et al. In situ evidence for an ancient aqueous environment at Meridiani Planum,Mars[J]. Science,2004,306(5702):1709-1714. doi: 10.1126/science.1104559 [2] JAUMANN R,NEUKUM G,BEHNKE T,et al. The High-Resolution Stereo Camera (HRSC) experiment on Mars Express:instrument aspects and experiment conduct from interplanetary cruise through the nominal mission[J]. Planetary and Space Science,2007,55(7-8):928-952. doi: 10.1016/j.pss.2006.12.003 [3] LEVY J, HEAD J, MARCHANT D. Thermal contraction crack polygons on Mars: classification, distribution, and climate implications from HiRISE observations[J]. Journal of Geophysical Research: Planets, 2009, 114(E1): 1-19. [4] BIBRING J P,LANGEVIN Y,POULET F,et al. Perennial water ice identified in the south polar cap of Mars[J]. Nature,2004,428(6983):627-630. doi: 10.1038/nature02461 [5] YE P J,SUN Z Z,RAO W,et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China Technological Sciences,2017,60(5):649-657. doi: 10.1007/s11431-016-9035-5 [6] 朱新波,褚英志. “天问”一号任务火星环绕器总体设计[J]. 中国航天,2021(6):25-31. doi: 10.3969/j.issn.1002-7742.2021.06.004ZHU X B,CHU Y Z. The overall design of Tianwen 1 Mars orbiter[J]. Aerospace China,2021(6):25-31. doi: 10.3969/j.issn.1002-7742.2021.06.004 [7] WAN W,YU T,DI K,et al. Visual localization of the Tianwen-1 lander using orbital,descent and rover images[J]. Remote Sensing,2021,13(17):3439. doi: 10.3390/rs13173439 [8] WU X,LIU Y,ZHANG C,et al. Geological characteristics of China's Tianwen-1 landing site at Utopia Planitia,Mars[J]. Icarus,2021,370:114657. doi: 10.1016/j.icarus.2021.114657 [9] MILLS M M, MCEWEN A S. Preliminary regional geologic map of Utopia Planitia in the potential Tianwen-1 landing region[C]//2021 Annual Meeting of Planetary Geologic Mappers. [S. l.]: NASA-USGS, 2021. [10] WANG Y,LI B,ZHANG J,et al. The preliminary study of dust devil tracks in southern Utopia Planitia,landing area of Tianwen-1 mission[J]. Remote Sensing,2021,13(13):2601. doi: 10.3390/rs13132601 [11] LUO Y,YAN J,LI F,et al. Spatial autocorrelation of martian surface temperature and its spatio-temporal relationships with near-surface environmental factors across China’s Tianwen-1 landing zone[J]. Remote Sensing,2021,13(11):2206. doi: 10.3390/rs13112206 [12] 邸凯昌,刘斌,刘召芹. 火星遥感制图技术回顾与展望[J]. 航天器工程,2018,27(1):10-24. doi: 10.3969/j.issn.1673-8748.2018.01.002DI K C,LI B,LIU Z Q. Review and prospect of Mars mapping technique using remote sensing data[J]. Spacecraft Engineering,2018,27(1):10-24. doi: 10.3969/j.issn.1673-8748.2018.01.002 [13] SCHOLTEN F,GWINNER K,ROATSCH T,et al. Mars Express HRSC data processing–methods and operational aspects[J]. Photogrammetric Engineering & Remote Sensing,2005,71(10):1143-1152. [14] ALBERTZ J,ATTWENGER M,BARRETT J,et al. HRSC on Mars express-photogrammetric and cartographic research[J]. Photogrammetric Engineering & Remote Sensing,2005,71(10):1153-1166. [15] KIRK R L, HOWINGTON-KRAUS E, ROSIEK M R, et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: meter-scale slopes of candidate Phoenix landing sites[J]. Journal of Geophysical Research: Planets, 2008, 113(E3). [16] KIM J R, MULLER J P, BLAME M, et al. Geometric ground control of very high resolution imagery using HRSC intersection points and a non-Rigorous camera model[C]//38th Annual Lunar and Planetary Science Conference. Houston, TX, USA: NASA, 2007. [17] KIM J R,LIN S Y,MULLER J P,et al. Multi-resolution digital terrain models and their potential for Mars landing site assessments[J]. Planetary and Space Science,2013,85:89-105. doi: 10.1016/j.pss.2013.06.001 [18] BUE B D,STEPINSKI T F. Automated classification of landforms on Mars[J]. Computers & Geosciences,2006,32(5):604-614. [19] STEPINSKI T F,BAGARIA C. Segmentation-based unsupervised terrain classification for generation of physiographic maps[J]. IEEE Geoscience and Remote Sensing Letters,2009,6(4):733-737. doi: 10.1109/LGRS.2009.2024333 [20] KRAUT A, WETTERGREEN D. Classification of Mars terrain using multiple data sources[C]// Conference on Intelligent Data Understanding. Mountain View, CA, USA: NASA, 2010. [21] ONO M, ROTHROCK B, ALMEIDA E, et al. Data-driven surface traversability analysis for Mars 2020 landing site selection[C]//2016 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2016. [22] ROTHROCK B, KENNEDY R, CUNNINGHAM C, et al. Spoc: deep learning-based terrain classification for mars rover missions[M]. [S. l. ]: AIAA SPACE, 2016. [23] ZOU Y,ZHU Y,BAI Y,et al. Scientific objectives and payloads of Tianwen-1,China’s first Mars exploration mission[J]. Advances in Space Research,2021,67(2):812-823. doi: 10.1016/j.asr.2020.11.005 [24] SHORTHILL R W,MOORE H J,HUTTON R E,et al. The environs of Viking 2 lander[J]. Science,1976,194(4271):1309-1318. doi: 10.1126/science.194.4271.1309 [25] LI R,HWANGBO J,CHEN Y,et al. Rigorous photogrammetric processing of HiRISE stereo imagery for Mars topographic mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(7):2558-2572. doi: 10.1109/TGRS.2011.2107522 [26] MCEWEN A S, ELIASON E M, BERGSTROM J W, et al. Mars reconnaissance orbiter's high resolution imaging science experiment (HiRISE)[J]. Journal of Geophysical Research: Planets, 2007, 112(E5). [27] XIN X,DI K,WANG Y,et al. Automated detection of new impact sites on Martian surface from HiRISE images[J]. Advances in Space Research,2017,60(7):1557-1569. doi: 10.1016/j.asr.2017.06.044 [28] 孟庆宇,付中梁,董吉洪等. 火星探测高分辨率可见光相机光学系统设计[J]. 深空探测学报(中英文),2018,5(5):458-464.MENG Q,FU Z,DONG J,WANG D. The optical system design of the high-resolution visible spectral camera for China Mars exploration[J]. Journal of Deep Space Exploration,2018,5(5):458-464. [29] MENG Q,WANG D,WANG X,et al. High Resolution Imaging Camera (HiRIC) on China’s first Mars exploration Tianwen-1 mission[J]. Space Science Reviews,2021,217(3):1-29. [30] YAN W,LIU J,REN X,et al. Detection capability verification and performance test for the high resolution imaging camera of China’s Tianwen-1 mission[J]. Space Science Reviews,2021,217(6):1-21. [31] LIU S,ZHAO H,DU Q,BRUZZONE L,et al. Novel cross-resolution feature-level fusion for joint classification of multispectral and panchromatic remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-14. [32] 中国探月与深空探测网. 天问一号环绕器进入遥感使命轨道[EB/OL]. (2021-11-08)[2022-01-13]. http://www.clep.org.cn/n5982341/c6812977/content.html. -
计量
- 文章访问数: 180
- 被引次数: 0