中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地外天体形貌测绘研究现状与展望

徐青 耿迅

徐青, 耿迅. 地外天体形貌测绘研究现状与展望[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210162
引用本文: 徐青, 耿迅. 地外天体形貌测绘研究现状与展望[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210162
XU Qing, GENG Xun. Recent Advances and Prospects in Extraterrestrial Planets Mapping[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210162
Citation: XU Qing, GENG Xun. Recent Advances and Prospects in Extraterrestrial Planets Mapping[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210162

地外天体形貌测绘研究现状与展望

doi: 10.15982/j.issn.2096-9287.2022.20210162
基金项目: 国家自然科学基金资助项目(41401533);河南省智慧中原地理信息技术协同创新中心资助项目(2020C004)
详细信息
    作者简介:

    徐青(1964– ),男,教授,博士生导师,主要研究方向:数字摄影测量、深空测绘。通讯地址:河南省郑州市陇海中路66号(475002)E-mail:13937169139@139.com

  • ● This paper reviews the recent advances in the topographic mapping of extraterrestrial planets. The representative deep space exploration missions involving mapping products for moon, Mars and asteroids are summarized. ● We give some suggestions on the construction of technology system, establishment of standards, opening of raw data, and key technology bottlenecks of extraterrestrial planets mapping.
  • 中图分类号: P237

Recent Advances and Prospects in Extraterrestrial Planets Mapping

  • 摘要: 地外天体的形貌测绘产品为深空探测工程任务的顺利实施以及各种行星科学研究提供基础地理信息数据,用于着陆区选址、巡视器路径规划、行星地质与地貌分析等。对月球、火星、小行星探测任务中有代表性的形貌测绘技术与遥感制图成果进行了总结,重点梳理了利用测绘相机、激光高度计等科学仪器获取月球与行星表面的数字正射影像图与数字高程模型的研究现状。结合中国开展地外天体形貌测绘的实际需求,针对标准制定、数据共享、关键技术瓶颈、数据处理技术体系等方面给出了几点建议。
    Highlights
    ● This paper reviews the recent advances in the topographic mapping of extraterrestrial planets. The representative deep space exploration missions involving mapping products for moon, Mars and asteroids are summarized. ● We give some suggestions on the construction of technology system, establishment of standards, opening of raw data, and key technology bottlenecks of extraterrestrial planets mapping.
  • 图  1  中国“天问一号”火星探测任务预选着陆区正射影像拼图[66]

    Fig.  1  The orthophoto mosaics for candidate landing regions of Chinese Tianwen-1[66]

    图  2  贝努小行星全球正射影像拼图

      注:图片来源于USGS,分辨率为5 cm/像素。

    Fig.  2  The global digital orthophoto mosaics of Bennu

    表  1  典型月球探测任务遥感制图产品

    Table  1  Typical lunar exploration projects and lunar mapping products

    探测任务任务时间科学仪器制图产品
    美国
    Clementine
    1994-01—
    1994-05
    UVVIS、NIR相机、
    激光高度计
    100 m全月DOM与ULCN2005月球控制网,平面精度为100 m~几km,高程精度为100 m;分辨率为16 像素/(°)(约1.9 km/像素)的近似全月DEM(覆盖–79°~82.9°范围)
    美国
    LRO
    2009-06
    至今
    WAC与NAC相机、
    LOLA激光高度计
    分辨率为100 m/像素的GLD100 DEM,水平精度为±18 m,垂直精度为±2 m;分辨率为100 m/像素的全月DOM;分辨率为118 m/像素的LOLA DEM,水平精度为±20 m,垂直精度为±1 m
    日本
    SELENE
    2007-11—
    2009-06
    TC相机、
    LALT激光高度计
    分辨率512像素/(°)(约60 m/像素)的近似全月DEM(SLDEM 2015),覆盖±60°纬度区域,垂直精度约±3~4 m。分辨率为59 m/像素的MI多光谱影像拼图,覆盖±65°纬度区域
    印度
    Chandrayaan-1
    2008-10—
    2009-08
    TMC相机、
    LLRI激光高度计
    TMC影像分辨率为5 m/像素,仅有局部区域制图成果,未发布全球制图产品
    印度
    Chandrayaan-2
    2019-07
    至今
    TMC2、
    OHRC相机
    着陆器失败,轨道器仍然在轨运行,TMC2影像分辨率为5 m/像素,OHRC影像分辨率为0.25~0.32 m/像素
    中国
    CE-1
    2007-10—
    2009-03
    线阵测绘相机、
    LAM激光高度计
    分辨率3 km/像素的全月LAM DEM,平面精度为±445 m,高程精度为±60 m;分辨率为120 m/像素的全月DOM以及500 m/像素的全月DEM,平面精度为±192 m,高程精度为±120 m
    中国
    CE-2
    2010-10—
    2011-05
    线阵测绘相机7 m/像素全月DOM,20 m/像素全月DEM;CE2TMap2015的平面相对位置偏差的平均值为5 m,标准差为4 m,高程相对偏差的平均值为2 m,标准差为5 m;与5个月面激光反射器的已知位置相比,平面位置偏差在21~97 m,高程偏差在2~19 m
    下载: 导出CSV

    表  2  典型火星探测任务遥感制图产品

    Table  2  Typical Mars exploration projects and Mars mapping products

    探测任务任务时间科学仪器制图产品
    美国
    Viking1/2
    1975-08—
    1980-08
    VIS相机Viking MDIM 2.1全色、彩色全球DOM,火星全球1∶500万、1∶200万地形图,局部区域1∶200万~1∶5万比例尺地形图
    美国
    MGS
    1996-11—
    2007-04
    MOC相机、
    MOLA激光高度计
    分辨率为463 m/像素的MOLA DEM,垂直精度为±2 m;基于MOC影像绘制了火星表面局部区域地图
    美国
    Odyssey
    2001-04
    至今
    THEMIS相机红外波段白天的全球DOM以及夜晚的近似全球DOM(覆盖–60°~60°纬度区域),分辨率为100 m/像素,平面精度为±100 m
    美国
    MRO
    2005-08
    至今
    HiRISE、
    CTX相机
    利用HiRISE影像制作了局部区域分辨率为25 cm/像素的DOM与1 m/像素的DEM,利用CTX影像制作了分辨率为5 m/像素的火星全球DOM拼图
    欧洲
    MEX
    2016-03
    至今
    HRSC多线阵立体测绘相机局部区域分辨率为12.5 m/像素的DOM与50 m/像素的DEM,多条带拼接DOM与DEM产品正在处理中
    欧洲
    TGO
    2016-03
    至今
    CaSSIS相机影像分辨率为4.6 m/像素,制作了局部区域DOM与DEM
    印度
    Mangalyaan
    2013-11
    至今
    MCC与TIS相机TMC影像分辨率为5 m/像素,仅有局部区域制图成果,未发布全球制图产品
    中国
    “天问一号”
    2020-07
    至今
    中分辨率相机、
    高分辨率相机
    搭载了中分辨率、高分辨率相机,拟制作分辨率为60 m/像素的火星全球DOM
    阿联酋
    Hope
    2020-07-20至今多波段相机、
    近红外光谱仪等
    未发布相关制图产品
    下载: 导出CSV
  • [1] 徐青, 邢帅, 周杨, 等. 深空行星形貌测绘的理论技术与方法[M], 北京: 科学出版社, 2016.
    [2] 徐青,耿迅,蓝朝桢,等. 火星地形测绘研究综述[J]. 深空探测学报(中英文),2014,1(1):28-35.

    XU Q,GENG X,LAN C Z,et al. Review of Mars topographic mapping[J]. Journal of Deep Space Exploration,2014,1(1):28-35.
    [3] KIRK R L,KRAUS E H,REDDING B,et al. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images[J]. Journal of Geophysical Research,Planets,2003,108(E12):8088.
    [4] KIRK R L,KRAUS E H,ROSIEK R M,et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images:meter-scale slopes of candidate Phoenix landing sites[J]. Journal of Geophysical Research-Planets,2008,113:5578-5579.
    [5] 邸凯昌,刘斌,辛鑫,等. 月球轨道器影像摄影测量制图进展及应用[J]. 测绘学报,2019,48(12):1562-1574.

    DI K C,LIU B,XIN X,et al. Advances and applications of lunar photogrammetric mapping using orbital images[J]. Acta Geodaetica et Cartographica Sinica,2019,48(12):1562-1574.
    [6] WU B,LI F,HU H,et al. Topographic and geomorphological mapping and analysis of the Chang'E-4 landing site on the far side of the Moon[J]. Photogrammetric Engineering and Remote Sensing,2020,86(4):247-258. doi:  10.14358/PERS.86.4.247
    [7] FERGASON R L, HARE T M, MAYER D P, et al. Mars 2020 terrain relative navigation flight product generation: digital terrain model and orthorectified image mosaics[C]//51st Lunar and Planetary Science Conference. Woodlands, Texas: [s. n.], 2020.
    [8] 邸凯昌, 刘召芹, 万文辉, 等. 月球和火星遥感制图与探测车导航定位[M]. 北京: 科学出版社, 2015.
    [9] 欧阳自远, 李春来, 邹永廖, 等, 绕月探测工程的初步科学成果[J]. 中国科学: 地球科学, 2010, 40(3): 261-280.

    OUYANG Z Y, LI C L, ZOU Y L, et al. The primary science result from the Chang’E-1 probe[J]. SCIENCE CHINA Earth Sciences, 2010, 40(3): 261-280.
    [10] 王越,王彪,王汛,等. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文),2020,7(4):371-383.

    WANG Y,WANG B,WANG X,et al. Analysis and selection of landing areas for Mars mission[J]. Journal of Deep Space Exploration,2020,7(4):371-383.
    [11] 李春来,刘建军,耿言,等. 中国首次火星探测任务科学目标与有效载荷配置[J]. 深空探测学报(中英文),2018,5(5):406-413.

    LI C L,LIU J J,GENG Y,et al. Scientific objectives and payload configuration of China's first Mars exploration mission[J]. Journal of Deep Space Exploration,2018,5(5):406-413.
    [12] 王任享. 月球卫星三线阵CCD影像EFP光束法空中三角测量[J]. 测绘科学,2008,33(4):5-7. doi:  10.3771/j.issn.1009-2307.2008.04.001

    WANG R X. EFP bundle triangulation using lunar imagery obtained from satellite three-line-array camera[J]. Science of Surveying and Mapping,2008,33(4):5-7. doi:  10.3771/j.issn.1009-2307.2008.04.001
    [13] 李春来. 嫦娥一号三线阵CCD数据摄影测量处理及全月球数字地形图[J]. 测绘学报,2013,42(6):853-860.

    LI C L. Photogrammetric processing and lunar global topographic map from the Chang’E-1 3 line-array CCD data[J]. Acta Geodaetica et Cartographica Sinica,2013,42(6):853-860.
    [14] 李春来,任鑫,刘建军,等. 嫦娥一号激光测距数据及全月球DEM模型[J]. 中国科学:地球科学,2010,40(3):281-293.

    LI C L,REN X,LIU J J,et al. Laser altimetry data of Chang’E-1 and the global lunar DEM model[J]. SCIENCE CHINA Earth Sciences,2010,40(3):281-293.
    [15] GENG X,XU Q,XING S,et al. A robust ground-to-image transformation algorithm and its applications in the geometric processing of linear pushbroom images[J]. Earth and Space Science,2019,6(10):1805-1830. doi:  10.1029/2019EA000646
    [16] REN X,LIU J,LI C,et al. A global adjustment method for photogrammetric processing of Chang’E-2 stereo images[J]. IEEE Transactions on Geoscience And Remote Sensing,2019,57(9):6832-6843. doi:  10.1109/TGRS.2019.2908813
    [17] WU B,LIU W C. Calibration of boresight offset of LROC NAC imagery for precision lunar topographic mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,128:372-387. doi:  10.1016/j.isprsjprs.2017.04.012
    [18] 万卫星,魏勇,郭正堂,等. 从深空探测大国迈向行星科学强国[J]. 中国科学院院刊,2019,34(7):748-755.

    WAN W X,WEI Y,GUO Z T,et al. Toward a power of planetary science from a giant of deep Space exploration[J]. Bulletin of Chinese Academy of Sciences,2019,34(7):748-755.
    [19] REISS D,ZANETTI M,NEUKUM G. Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC)[J]. Icarus,2011,215(1):358-369. doi:  10.1016/j.icarus.2011.06.011
    [20] DUNDAS C M,MCEWEN A S,CHOJNACKI M,et al. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water[J]. Nature Geoscience,2017,10(12):903. doi:  10.1038/s41561-017-0012-5
    [21] BICKEL V T,LANARAS C,MANCONI A,et al. Automated detection of lunar rockfalls using a convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(6):3501-3511. doi:  10.1109/TGRS.2018.2885280
    [22] EDMUNDSON K L, ALEXANDROV O, ARCHINAL B A, et al. Photogrammetric processing of Apollo 15 metric camera oblique images[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. [S. l.]: ISPRS, 2016.
    [23] United States Geological Survey. UVVIS global basemap mosaic[EB/OL].(2008)[2021-12-28]. https://pdsimage.wr.usgs.gov/data/clem1-l-u-5-dim-basemap-v1.0/.
    [24] ARCHINAL B A, ROSIEK M R, KIRK R L, et al. The unified lunar control network 2005 open file report version 1.0[EB/OL]. (2020-12-12)[2022-01-20].https: //pubs.usgs.gov/of/2006/1367/ULCN2005-OpenFile.pdf.
    [25] SCHOLTEN F,OBERST J,MATZ K D,et al. GLD100:the near-global lunar 100m raster DTM from LROC WAC stereo image data[J]. Journal of Geophysical Research:Planets,2012,117(E12):E00H17.
    [26] SPEYERER E J,WAGNER R V,ROBINSON M S,et al. Pre-flight and on-orbit geometric calibration of the Lunar Reconnaissance Orbiter Camera[J]. Space Science Review,2016,200:357-392. doi:  10.1007/s11214-014-0073-3
    [27] SMITH D E,ZUBER M,JACKSON G B,et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission[J]. Space Science Reviews,2010,150(1):209-241.
    [28] BARKER M K,MAZARICO E,NEUMANN G A,et al. A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera[J]. Icarus,2016,273:346-355. doi:  10.1016/j.icarus.2015.07.039
    [29] HARUYAMA J, OHTAKE M, MATSUNAGA T, et al. Data products of SELENE(KAGUYA) terrain camera for future lunar missions[C]//45th Lunar and Planetary Science Conference. Woodlands, Texas: [s. n. ]: 2014.
    [30] RADHADEVI P V,SOLANKI S S,NAGASUBRAMANIAN V,et al. An algorithm for geometric correction of full pass TMC imagery of Chandrayaan-1[J]. Planetary and Space Science,2013,79:45-51.
    [31] KRISHNA B G, AMITABH, SINGH S, et al. Digital elevation models of the lunar surface from Chandrayaan-1 terrain mapping imagery—initial results[C]//40th Lunar and Planetary Science Conference. Los Angeles, CA: 2009.
    [32] SIVAKUMAR V,KUMAR B,SRIVASTAVA S K,et al. DEM generation for lunar surface using Chandrayaan-1 TMC triplet data[J]. Journal of Indian Society of Remote Sensing,2012,40(4):551-564. doi:  10.1007/s12524-011-0172-5
    [33] CHOWDHURY A R,SAXENA M,KUMAR A,et al. Orbiter high resolution camera onboard Chandrayaan-2 orbiter[J]. Current Science,2019,117(7):560-565.
    [34] 李春来,刘建军,任鑫,等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报(信息科学版),2018,43(4):485-495.

    LI C L,LIU J J,REN X,et al. Lunar global high-precision terrain reconstruction based on Chang'e-2 stereo images[J]. Geomatics and Information Science of Wuhan University,2018,43(4):485-495.
    [35] DI K C,JIA M N,XIN X. ,et al. High-resolution large-area digital orthophoto map generation using LROC NAC images[J]. Photogramm. Eng. Remote Sens,2019,85:481-491. doi:  10.14358/PERS.85.7.481
    [36] LROC Team. North polar mosaic[EB/OL]. [2022-01-20].https: //www.lroc.asu.edu/posts/gigapan/.
    [37] WU B,LIU W C,GRUMPE A,et al. Construction of pixel-level resolution DEMs from monocular images by shape and albedo from shading constrained with low-resolution DEM[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,140:3-19. doi:  10.1016/j.isprsjprs.2017.03.007
    [38] LIU W C,WU B. An integrated photogrammetric and photoclinometric approach for illumination-invariant pixel-resolution 3D mapping of the lunar surface[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,159:153-168. doi:  10.1016/j.isprsjprs.2019.11.017
    [39] 彭嫚,万文辉,吴凯,等. 嫦娥三号导航相机测图能力分析与地形重建[J]. 遥感学报,2014,18(5):995-1002. doi:  10.11834/jrs.20144073

    PENG M,WAN W H,WU K,et al. Topographic mapping capability analysis of Chang’e-3 Navcam stereo images and three-dimensional terrain reconstruction for mission operations[J]. Journal of Remote Sensing,2014,18(5):995-1002. doi:  10.11834/jrs.20144073
    [40] WANG Y X, WAN W H, GOU S, et al. Vision-based decision support for rover path planning in the Chang’e-4 mission[J]. Remote Sensing 2020, 12: 624.
    [41] 邸凯昌,刘召芹,刘斌,等. 多源数据的嫦娥四号着陆点定位[J]. 遥感学报,2019,23(1):177-184.

    DI K C,LIU Z Q,LIU B,et al. Chang’e-4 lander localization based on multi-source data[J]. Journal of Remote Sensing,2019,23(1):177-184.
    [42] 邸凯昌,刘斌,彭嫚,等. 利用多探测任务数据建立新一代月球全球控制网的方案与关键技术[J]. 武汉大学学报(信息科学版),2018,43(12):2099-2105.

    DI K C,LIU B,PENG M,et al. Scheme and key techniques for construction of new-generation lunar global control network using multi-mission data[J]. Geomatics and Information Science of Wuhan University,2018,43(12):2099-2105.
    [43] 邸凯昌,刘斌,刘召芹. 火星遥感制图技术回顾与展望[J]. 航天器工程,2018,27(1):10-24. doi:  10.3969/j.issn.1673-8748.2018.01.002

    DI K C,LIU B,LIU Z Q. Review and prospect of Mars mapping technique using remote sensing data[J]. Spacecraft Engineering,2018,27(1):10-24. doi:  10.3969/j.issn.1673-8748.2018.01.002
    [44] WU S S C,ELASSAL A A,JORDAN R,et al. Photogrammetric application of Viking orbital photography[J]. Planetary Space Science,1982,30(1):45-55. doi:  10.1016/0032-0633(82)90071-X
    [45] ROSIEK M R,KIRK R L,ARCHINAL B A,et al. Utility of Viking orbiter images and products for Mars mapping[J]. Photogrammetric Engineering & Remote Sensing,2005,71(10):1187-1195.
    [46] NEUMANN G A,ROWLANDS D D,LEMOINE F G,et al. Crossover analysis of Mars orbiter laser altimeter data[J]. Journal of Geophysical Research:Planets,2001,106(E10):23753-23768. doi:  10.1029/2000JE001381
    [47] SMITH D E,ZUBER M T,FREY H V,et al. Mars orbiter laser altimeter—experiment summary after the first year of global mapping of Mars[J]. Journal of Geophysical Research:Planets,2001,106(E10):23689-23722. doi:  10.1029/2000JE001364
    [48] EDWARDS C S,NOWICKI K J,CHRISTENSEN P R,et al. Mosaicking of global planetary image datasets:1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data[J]. Journal of Geophysical Research:Planets,2011,116(E10):E10008. doi:  10.1029/2010JE003755
    [49] MCEWEN A S,BANKS M E,BAUGH N,et al. The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP)[J]. Icarus,2010,37(2):1-36.
    [50] PUTRI A R D,SIDIROPOULOS P,MULLER J P,et al. A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express[J]. Planetary Space Sci.,2019,174:43-55. doi:  10.1016/j.pss.2019.02.010
    [51] DICKSON J L, KERBER L A, FASSETT C I, et al. A global, blended CTX mosaic of Mars with vectorized seam mapping: a new mosaicking pipeline using principles of non-destructive image editing[C]//In Proceedings of the 49th Lunar and Planetary Science Conference. Woodlands, TX, USA: [s. n. ]: 2018.
    [52] LI R X,HWANGBO J,CHEN Y H,DI K C. Rigorous photogrammetric processing of HiRISE stereo imagery for Mars topographic mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(7):2558-2572. doi:  10.1109/TGRS.2011.2107522
    [53] GOLOMBEK M,WARNER N H,GRANT J A,et al. Geology of the InSight landing site on Mars[J]. Nature Communication,2020,11(1):1014. doi:  10.1038/s41467-020-14679-1
    [54] GRANT J A,GOLOMBEK M P,WILSON S A,et al. The science process for selecting the landing site for the 2020 Mars rover[J]. Planetary and Space Science,2018,164:106-126. doi:  10.1016/j.pss.2018.07.001
    [55] GOLOMBEK M P,GRANT J,PARKER T J,et al. Selection of the Mars exploration rover landing sites[J]. Journal of Geophysical Research:Planets,2003,108(E12):8072.
    [56] HARE T M, CUSHING G, SHINAMEN J, et al. Context Camera (CTX) image mosaics for Mars human exploration zones[EB/OL]. (2016)[2021-12-28]. http://bit.ly/CTX_EZs.
    [57] GWINNER K,SCHOLTEN F,SPIEGEL M,et al. Derivation and validation of high-resolution digital terrain models from Mars Express HRSC data[J]. Photogrammetric Engineering and Remote Sensing,2009,75(9):1127-1142. doi:  10.14358/PERS.75.9.1127
    [58] GWINNER K,JAUMANN R,HAUBER E,et al. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites[J]. Planetary and Space Science,2016,126:93-138. doi:  10.1016/j.pss.2016.02.014
    [59] GWINNER K, JAUMANN R, BOSTELMANN J, et al. The first quadrangle of the Mars Express HRSC multi orbit data products (MC-11-E)[C]//European Planetary Science Congress (EPSC). Nantes, France: [s. n. ], 2015,
    [60] FERGASON R L, HARE T M, LAURA J. HRSC and MOLA blended digital elevation model at 200m v2. [EB/OL].(2018)[2021-12-28]. http://bit.ly/HRSC_MOLA_Blend_v0.
    [61] SIMIONI E,RE C,MUDRIC T,et al. A photogrammetric pipeline for the 3d reconstruction of Cassis Images on board ExoMars TGO[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2017,XLII-3/W1:133-139.
    [62] ARYA A S, RAJASEKHAR R P, SINGH R B, et al. Mars color camera onboard Mars orbiter mission: initial observations and results[C]//46th Lunar and Planetary Science Conference. Woodlands, Texas: [s. n. ], 2015.
    [63] MISRA I, MOORTHI S M, DHAR D. Techniques developed for large area Mars image mosaic using ISRO's Mars Color Camera (MCC) data[J]. Journal of Geomatics, 2019, 13(1): 106-110.
    [64] 关昭,乔卫东,杨建峰,等. 火星多光谱相机的地面几何标定研究[J]. 深空探测学报(中英文),2018,5(5):465-471.

    GUAN Z,QIAO W D,YANG J F,et al. Ground geometric calibration of Mars multispectral camera[J]. Journal of Deep Space Exploration,2018,5(5):465-471.
    [65] WAN W H,YU T Y,DI K C,et al. Visual localization of the Tianwen-1 lander using orbital,descent and rover images[J]. Remote Sensing,2021,13:3439. doi:  10.3390/rs13173439
    [66] GENG X, XU Q, WANG J Y, et al. Generation of large-scale orthophoto mosaics using MEX HRSC images for the candidate landing regions of China’s first Mars mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021.
    [67] 耿迅,徐青,邢帅,等. 火星快车HRSC线阵影像投影轨迹法近似核线重采样[J]. 武汉大学学报(信息科学版),2015,40(1):40-45.

    GENG X,XU Q,XING S,et al. Approximate epipolar resampling of Mars Express HRSC linear pushbroom imagery based on projection trajectory method[J]. Geomatics and Information Science of Wuhan University,2015,40(1):40-45.
    [68] GENG X,XU Q,XING S,et al. A novel pixel-level image matching method for Mars Express HRSC linear pushbroom imagery using approximate orthophotos[J]. Remote Sensing,2017,9(12):1262. doi:  10.3390/rs9121262
    [69] GENG X,XU Q,LAN C Z,et al. Orthorectification of planetary linear pushbroom images based on an improved back-projection algorithm[J]. IEEE Geoscience and Remote Sensing Letters,2019,16(6):854-858. doi:  10.1109/LGRS.2018.2885086
    [70] GENG X,XU Q,XING S,et al. A generic pushbroom sensor model for planetary photogrammetry[J]. Earth and Space Science,2020,7(5):e2019EA001014.
    [71] 李春来,刘建军,严韦,等. 小行星探测科学目标进展与展望[J]. 深空探测学报(中英文),2019,6(5):424-436.

    LI C L,LIU J J,YAN W,et al. Overview of scientific objectives for minor planets exploration[J]. Journal of Deep Space Exploration,2019,6(5):424-436.
    [72] BARNOUIN O S,DALY M G,PALMER E E,et al. Digital terrain mapping by the OSIRIS-REx mission[J]. Planetary and Space Science,2020,180:104764. doi:  10.1016/j.pss.2019.104764
    [73] SCHOLTEN F,PREUSKER F,ELGNER S,et al. The Hayabusa2 lander MASCOT on the surface of asteroid (162173) Ryugu-Stereo-photogrammetric analysis of MASCam image data[J]. Astronomy & Astrophysics,2019,632:L5.
    [74] BUSSEY D B J,ROBINSON M S,EDWARDS K. 433 Eros global basemap from NEAR Shoemaker MSI images[J]. Icarus,2002,155:38-50. doi:  10.1006/icar.2001.6771
    [75] GASKELL R W,BARNOUIN O S,SCHEERES D J,et al. Characterizing and navigating small bodies with imaging data[J]. Meteoritics & Planetary Science,2008,43(6):1049-1061.
    [76] PREUSKER F,SCHOLTEN F,MATZ K D,et al. Shape model,reference system definition,and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko. Stereo-photogrammetric analysis of Rosetta/OSIRIS image data[J]. Astronomy & Astrophysics,2015,583:A33.
    [77] ROATSCH T,KERSTEN E,MATZ K D,et al. High resolution Vesta High Altitude Mapping Orbit (HAMO) Atlas derived from Dawn framing camera images[J]. Planetary and Space Science,2012,73(1):283-286. doi:  10.1016/j.pss.2012.08.021
    [78] ROATSCH T,KERSTEN E,MATZ K D,et al. High-resolution Vesta low altitude mapping orbit atlas derived from Dawn framing camera images[J]. Planetary and Space Sciences,2013,85:293-298. doi:  10.1016/j.pss.2013.06.024
    [79] ROATSCH T,KERSTEN E,MATZ K D,et al. High-resolution Ceres high altitude mapping orbit atlas derived from Dawn framing camera images[J]. Planetary and Space Science,2016,129:103-107. doi:  10.1016/j.pss.2016.05.011
    [80] ROATSCH T,KERSTEN E,MATZ K D,et al. High-resolution Ceres low altitude mapping orbit atlas derived from dawn Framing Camera images[J]. Planetary and Space Science,2017,140:74-79. doi:  10.1016/j.pss.2017.04.008
  • [1] 尹力, 叶乐佳, 邸凯昌, 刘斌, 孙小珠, 王长焕, 薄正.  坡度变化率建模的低分辨率坡度补偿方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210161
    [2] 耿迅, 徐青.  一种线阵推扫式行星遥感影像摄影测量快速处理方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210002
    [3] 陈春亮, 张正峰, 盛瑞卿, 杨孟飞.  深空探测跳跃式再入返回任务设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210016
    [4] 刘奇祺, 陈楠, 林偲蔚.  月表可照时间谱和太阳辐射谱空间分布特征研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210100
    [5] 于志坚, 李海涛.  月球与行星探测测控系统建设与发展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210125
    [6] 牛厂磊, 罗志福, 雷英俊, 王文强, 郑见杰, 乔学荣, 罗洪义, 胡文军, 钟武烨.  深空探测先进电源技术综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20200002
    [7] 陈莉丹, 谢剑锋, 刘勇, 陈明.  中国深空探测任务轨道控制技术综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.03.002
    [8] 路伟涛, 谢剑锋, 任天鹏, 韩松涛.  一种基于探测器下行信号融合处理的无线电干涉测量方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.03.004
    [9] 马辛, 宁晓琳, 刘劲, 刘刚.  一种平面约束辅助测量的深空探测器自主天文导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.03.014
    [10] 李永, 丁凤林, 周成.  深空探测推进技术发展趋势 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.04.002
    [11] 朱安文, 刘磊, 马世俊, 李明.  空间核动力在深空探测中的应用及发展综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.05.001
    [12] 胡宇鹏, 鲁亮, 向延华, 李思忠, 胡文军, 胡绍全.  深空探测器同位素热源环境试验技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.006
    [13] 张国万, 李嘉华.  冷原子干涉技术原理及其在深空探测中的应用展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.01.002
    [14] 王馨悦, 孙越强, 李永平, 唐萍.  质谱计在行星系统与小天体探测中的应用 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.06.004
    [15] 张建琴, 徐建明, 贾巍, 邱宝贵, 肖杰.  深空探测太阳电池阵应用及关键技术分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.001
    [16] 王伟, 马彦涵, 周易倩, 方宝东.  深空探测磁动力技术研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.03.002
    [17] 郑茂繁, 耿海, 梁凯, 唐福俊, 黄永杰, 柯于俊.  用于小行星探测的离子推力器技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.03.008
    [18] 吴伟仁, 于登云.  深空探测发展与未来关键技术 . 深空探测学报(中英文),
    [19] 蓝朝桢, 耿迅, 徐青, 崔平远.  基于序列影像的小天体三维形状重建方法研究 . 深空探测学报(中英文),
    [20] 张腾宇, 金双根, 崔祜涛.  利用数字高程模型自动检测火星表面陨石坑 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-01-20
  • 网络出版日期:  2022-05-16

地外天体形貌测绘研究现状与展望

doi: 10.15982/j.issn.2096-9287.2022.20210162
    基金项目:  国家自然科学基金资助项目(41401533);河南省智慧中原地理信息技术协同创新中心资助项目(2020C004)
    作者简介:

    徐青(1964– ),男,教授,博士生导师,主要研究方向:数字摄影测量、深空测绘。通讯地址:河南省郑州市陇海中路66号(475002)E-mail:13937169139@139.com

  • ● This paper reviews the recent advances in the topographic mapping of extraterrestrial planets. The representative deep space exploration missions involving mapping products for moon, Mars and asteroids are summarized. ● We give some suggestions on the construction of technology system, establishment of standards, opening of raw data, and key technology bottlenecks of extraterrestrial planets mapping.
  • 中图分类号: P237

摘要: 地外天体的形貌测绘产品为深空探测工程任务的顺利实施以及各种行星科学研究提供基础地理信息数据,用于着陆区选址、巡视器路径规划、行星地质与地貌分析等。对月球、火星、小行星探测任务中有代表性的形貌测绘技术与遥感制图成果进行了总结,重点梳理了利用测绘相机、激光高度计等科学仪器获取月球与行星表面的数字正射影像图与数字高程模型的研究现状。结合中国开展地外天体形貌测绘的实际需求,针对标准制定、数据共享、关键技术瓶颈、数据处理技术体系等方面给出了几点建议。

注释:
1)  ● This paper reviews the recent advances in the topographic mapping of extraterrestrial planets. The representative deep space exploration missions involving mapping products for moon, Mars and asteroids are summarized. ● We give some suggestions on the construction of technology system, establishment of standards, opening of raw data, and key technology bottlenecks of extraterrestrial planets mapping.

English Abstract

徐青, 耿迅. 地外天体形貌测绘研究现状与展望[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210162
引用本文: 徐青, 耿迅. 地外天体形貌测绘研究现状与展望[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210162
XU Qing, GENG Xun. Recent Advances and Prospects in Extraterrestrial Planets Mapping[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210162
Citation: XU Qing, GENG Xun. Recent Advances and Prospects in Extraterrestrial Planets Mapping[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210162
参考文献 (80)

返回顶部

目录

    /

    返回文章
    返回