中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

坡度变化率建模的低分辨率坡度补偿方法

尹力 叶乐佳 邸凯昌 刘斌 孙小珠 王长焕 薄正

尹力, 叶乐佳, 邸凯昌, 刘斌, 孙小珠, 王长焕, 薄正. 坡度变化率建模的低分辨率坡度补偿方法[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210161
引用本文: 尹力, 叶乐佳, 邸凯昌, 刘斌, 孙小珠, 王长焕, 薄正. 坡度变化率建模的低分辨率坡度补偿方法[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210161
YIN Li, YE Lejia, DI Kaichang, LIU Bin, SUN Xiaozhu, WANG Changhuan, BO Zheng. A Low-resolution Slope Compensation Method Involving Slope Change Rate[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210161
Citation: YIN Li, YE Lejia, DI Kaichang, LIU Bin, SUN Xiaozhu, WANG Changhuan, BO Zheng. A Low-resolution Slope Compensation Method Involving Slope Change Rate[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210161

坡度变化率建模的低分辨率坡度补偿方法

doi: 10.15982/j.issn.2096-9287.2022.20210161
基金项目: 国家自然科学基金(41771490,41941003); 中国科学院战略性先导科技专项(XDB41000000)
详细信息
    作者简介:

    尹力(1996– ),女,硕士研究生,主要研究方向:行星摄影测量。E-mail:yinli19@mails.ucas.ac.cn

    刘斌(1984– ),男,副研究员,主要研究方向:航空航天摄影测量、卫星遥感影像的高精度定位、行星制图与遥感。本文通讯作者。通讯地址:北京市朝阳区大屯路甲20号北中国科学院空天信息创新研究院(100101)电话:(010)64807987E-mail:liubin@radi.ac.cn

  • ● An improved method for low-resolution slope compensation is proposed. By incorporating the change rate information of low-resolution slope to the compensation model, the compensation results of low-resolution slope are closer to the reference value of high-resolution slope. ● The model suitable for the low-resolution slope compensation of the entire lunar surface are supplied and the graded compensation models are supplemented. ● The low-resolution slope data covering 50 km×50 km of the Tianwen-1 landing site is compensated and topographic analysis is performed.
  • 中图分类号:   

A Low-resolution Slope Compensation Method Involving Slope Change Rate

  • 摘要: 为解决月球、火星等行星表面缺乏高分辨率DEM(Digital Elevation Model)而造成的坡度低估问题,提出一种坡度变化率因子参与建模的低分辨率坡度补偿方法。方法对现有坡度补偿模型进行改进,在补偿模型中引入了坡度变化率参数,以提升坡度补偿的精度;利用月球和火星数据进行方法验证,选取覆盖多种地形的月球和火星低分辨率DEM,利用改进的方法进行坡度补偿,并利用高分辨率DEM生成的坡度做验证。实验结果表明:补偿后坡度较补偿前能更好地表征月球和火星表面的地形特征,且考虑坡度变化率的改进方法比传统的线性补偿方法更加有效。基于此方法,给出了适用于月球多地形的整体坡度补偿模型参数以及分级补偿模型参数,并对覆盖“天问一号”着陆点50 km×50 km的低分辨率火星坡度数据进行了补偿及分析应用。
    Highlights
    ● An improved method for low-resolution slope compensation is proposed. By incorporating the change rate information of low-resolution slope to the compensation model, the compensation results of low-resolution slope are closer to the reference value of high-resolution slope. ● The model suitable for the low-resolution slope compensation of the entire lunar surface are supplied and the graded compensation models are supplemented. ● The low-resolution slope data covering 50 km×50 km of the Tianwen-1 landing site is compensated and topographic analysis is performed.
  • 图  1  所提出坡度补偿方法的流程图

    Fig.  1  Flowchart of the proposed slope compensation method

    图  2  坡度计算方法示意图

    Fig.  2  Slope calculation method

    图  3  拉普拉斯算计卷积模板

    Fig.  3  Laplacian convolution template

    图  4  月球坡度实验数据

    Fig.  4  Experimental data of lunar slope

    图  5  火星坡度实验数据

    Fig.  5  Experimental data of Martian slope

    图  6  坡度低估现象

    Fig.  6  Phenomenon of slope reduction

    图  7  实验数据范围

    Fig.  7  Experimental data coverage

    图  8  HRSC-MOLA补偿前后坡度对比

    Fig.  8  Slope map before and after compensation

    图  9  HiRISE坡度以及HRSC-MOLA坡度补偿前后对比

    Fig.  9  HiRISE slope and HRSC-MOLA slope before and after compensation

    表  1  月球数据拟合结果

    Table  1  Fitting results of lunar data

    影像
    编号
    线性补偿结果$Z=a\times X+b$引入坡度变化率的补偿结果$Z=a\times X+b\times {X}^{\text{'} }+c$
    系数a系数b系数a系数b系数c
    11.0481.6411.0400.0791.388
    21.0811.2981.0640.0731.099
    31.1031.4981.0490.0961.214
    41.0542.6591.0540.1112.031
    50.9168.8310.9330.1366.628
    61.0631.8451.0630.0861.423
    71.1680.6061.1430.1290.120
    81.1841.4271.1750.0491.242
    91.1371.2851.1080.1160.889
    101.0803.9061.0870.0962.528
    111.2400.7081.2120.1090.328
    121.1221.0511.0780.1190.734
    131.1280.6531.1110.1260.306
    141.1310.9581.1110.0800.735
    下载: 导出CSV

    表  2  火星数据拟合结果

    Table  2  Fitting results of Martian data

    影像
    编号
    线性补偿结果 $Z=a\times X+b$引入坡度变化率的补偿结果$Z=a\times X+b\times {X}^{\text{'} }+c$
    系数a系数b系数a系数b系数c
    a0.6465.1500.5940.1755.010
    b0.8783.4140.7790.2433.128
    c0.8862.8570.7290.3842.508
    d0.4913.7590.3450.3293.614
    e0.6992.1860.6120.3252.018
    f0.8012.5130.7170.3382.237
    下载: 导出CSV

    表  3  月球补偿实验精度评价

    Table  3  Evaluation of lunar data experiments

    影像
    编号
    未补偿坡度/(°)线性补偿结果 $Z=a\times X+b$引入坡度变化率的补偿结果$Z=a\times X+b\times{X}^{\text{'} }+c$
    MAERMSEMAE补偿幅度/%RMSEMAE补偿幅度/%RMSE
    12.0002.3770.85557.31.2720.84257.91.232
    21.5851.8670.68057.10.9700.66558.00.934
    31.7622.2230.86351.01.3050.80854.11.221
    43.2954.0591.68149.02.3371.61750.92.246
    57.2859.1633.93246.05.4883.64450.05.092
    62.3752.8091.09453.91.5171.06255.31.461
    72.0703.1801.28837.82.0191.18742.71.853
    83.4534.2401.57654.42.1871.56954.62.174
    91.7162.2600.84650.71.3280.77155.11.206
    105.2476.6302.96943.43.9932.82746.13.806
    112.3453.4361.22847.62.0591.20148.81.971
    121.3611.8400.71347.61.1840.66151.41.093
    132.7133.4921.12958.41.7151.07860.31.605
    141.6262.2200.76053.31.2890.74354.31.248
    下载: 导出CSV

    表  4  火星实验精度评价

    Table  4  Evaluation of Martian data experiments

    影像
    编号
    未补偿坡度/(°)线性补偿结果$ Z=a \times X+b $引入坡度变化率的补偿结果$ Z=a \times X+b \times {X}^{\text{'}}+c $
    MAERMSEMAE补偿幅度/%RMSEMAE补偿幅度/%RMSE
    a4.7725.0131.16475.61.5111.16275.71.501
    b3.1013.6161.43753.71.8581.38155.51.791
    c2.6023.0711.28450.71.6381.21253.41.544
    d3.2733.5471.01669.01.3110.99569.61.279
    e1.8562.1560.77258.41.0750.75159.51.046
    f2.0492.4020.89956.11.2320.81260.41.104
    下载: 导出CSV

    表  5  月球多地形整体补偿模型精度评价

    Table  5  Evaluation of compensation model for global moon

    项目MAERMSE
    补偿后坡度值–目标坡度值1.3634.881
    下载: 导出CSV

    表  6  分级坡度拟合和检验结果

    Table  6  Fitting and validating results of graded lunar slopes

    分级标准/(°)数据量引入坡度变化率的坡度分级模型整体补偿模型
    系数a系数b系数cMAERMSEMAERMSE
    0~38 294 8951.1880.1440.6260.6861.1110.6901.116
    3~62 946 6041.1390.1610.6701.0831.7421.0691.758
    6~93 083 8111.1090.1570.8521.3382.0841.3212.095
    9~124 367 3431.1330.1330.7611.7292.5571.7302.557
    12~152 744 3301.1450.0960.9372.4803.4012.4723.413
    15~201 226 3381.1350.0831.1942.7003.5102.7083.536
    20~30120 5881.1970.0711.4082.7873.7062.9243.821
    >306 2770.8600.04515.2284.2385.3995.1946.754
    下载: 导出CSV

    表  7  补偿前后对比分析

    Table  7  Comparison analysis before and after compensation

    项目补偿前补偿后
    MAERMSEMAE补偿幅度RMSE
    HRSC-MOLA融合数据&HiRISE数据(DTEEC_069876_2055_069942)2.8463.1790.79672.0%1.409
    HRSC-MOLA融合数据&HiRISE数据(DTEEC_069665_2055_069731)3.3133.4050.62481.2%0.916
    下载: 导出CSV
  • [1] 杨旭艳,董治宝,杨勤科,等. 基于DEM的地球与火星格状沙丘对比分析[J]. 中国沙漠,2021,41(6):1-11.

    YANG X Y,DONG Z B,YANG Q K,et al. Comparison of networked dunes in the Earth and the Mars based on DEM[J]. Journal of Desert Research,2021,41(6):1-11.
    [2] GARRIDO S, MORENO L, MARTIN F, et al. Fast Marching subjected to a Vector Field-path planning method for Mars rovers[J]. Expert Systems with Applications. 2017, 78: 334-346.
    [3] MORAD S, KALITA H, THANGAVELAOTHAM J. Planning and navigation of climbing robots in low-gravity environments[C]//IEEE Aerospace Conference Proceedings. [S. l. ]: IEEE, 2018.
    [4] ROSA D D,BUSSEY B,CAHILL J T,et al. Characterization of potential landing sites for the European space agency's lunar lander project[J]. Planetary and Space Science,2012,74(1):224-246. doi:  10.1016/j.pss.2012.08.002
    [5] KIM J R,LIN S Y,MULLER J P,et al. Multi-resolution digital terrain models and their potential for Mars landing site assessments[J]. Planetary and Space Science,2013,85:89-105. doi:  10.1016/j.pss.2013.06.001
    [6] 汤国安,赵牡丹,李天文,等. DEM提取黄土高原地面坡度的不确定性[J]. 地理学报,2003,58(6):824-830. doi:  10.3321/j.issn:0375-5444.2003.06.004

    TANG G A,ZHAO M D,LI T W,et al. Modeling slope uncertainty derived from DEMs in loess plateau[J]. Acta Geographica Sinica,2003,58(6):824-830. doi:  10.3321/j.issn:0375-5444.2003.06.004
    [7] ROBINSON M S, BRYLOW S M, TSCHIMMEL M, et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview[J]. Space Science Reviews 2010, 150(1-4): 81-124.
    [8] MCEWEN A S,ELIASON E M,BERGSTORM J W,et al. Mars reconnaissance orbiter's High Resolution Imaging Science Experiment (HiRISE)[J]. Journal of Geophysical Research-Planets,2007,112(E5):E05S02.
    [9] 邸凯昌,刘斌,辛鑫,等. 月球轨道器影像摄影测量制图进展及应用[J]. 测绘学报,2019,48(12):1562-1574.

    DI K C,LIU B,XIN X,et al. Advances and applications of lunar photogrammetric mapping using orbital images[J]. Acta Geodaetica of Cartographica Sinica,2019,48(12):1562-1574.
    [10] 邸凯昌,刘斌,刘召芹. 火星遥感制图技术回顾与展望[J]. 航天器工程,2018,27(1):15.

    DI K C,LIU B,LIU Z Q. Review and prospect of Mars mapping technique using remote sensing data[J]. Spacecraft Engineering,2018,27(1):15.
    [11] YANG Q K, DAVID J, LI R, et al. Re-scaling lower resolution slope by histogram matching[M]. Springer: Berlin Heidelberg, 2008.
    [12] 汤国安,刘学军,房亮,等. DEM及数字地形分析中尺度问题研究综述[J]. 武汉大学学报(信息科学版),2006(12):1059-1066.

    TANG G A,LIU X J,FANG L,et al. A Review on the scale issue in DEMs and digital terrain analysis[J]. Geomatics and Information Science of Wuhan University,2006(12):1059-1066.
    [13] 王英,龚家国,贾仰文,等. 基于不同分辨率 DEM 提取坡度值的转换关系研究[J]. 水利水电技术,2019,50(8):45-51.

    WANG Y,GONG J,JIA Y,et al. Study on conversion relationship of slope information extracted from different resolution DEM[J]. Water Resources and Hydropower Engineering,2019,50(8):45-51.
    [14] ZHANG X,DRAKE N A,AND J W,et al. Comparison of slope estimates from low resolution DEMs:scaling issues and a fractal method for their solution[J]. Earth Surface Processes and Landforms,1999,24(9):763-779. doi:  10.1002/(SICI)1096-9837(199908)24:9<763::AID-ESP9>3.0.CO;2-J
    [15] 陈燕,齐清文,汤国安. 黄土高原坡度转换图谱研究[J]. 干旱地区农业研究,2004(3):180-185. doi:  10.3321/j.issn:1000-7601.2004.03.040

    CHEN Y,QI Q W,TANG G A. Research on slope-conversion-atlas in Loess Plateau[J]. Agricultural Research in the Arid Areas,2004(3):180-185. doi:  10.3321/j.issn:1000-7601.2004.03.040
    [16] WANG Y R, WU B. Improved large-scale slope analysis on Mars based on correlation of slopes derived with different baselines[C]// PRSM 2017. [S. l. ]: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017.
    [17] WU B,LI F,HU H,et al. Topographic and geomorphological mapping and analysis of the Chang'E-4 landing site on the far side of the Moon[J]. Photogrammetric Engineering and Remote Sensing,2020,86(4):247-258. doi:  10.14358/PERS.86.4.247
    [18] 何振芳,赵牡丹,韩羽. 不同地貌类型坡度提取算法的比较[J]. 水土保持通报,2008,28(6):130-133.

    HE Z F,ZHAO M D,HAN Y. Comparison of extracting slope algorithms in different types of landscape[J]. Bulletin of Soil and Water Conservation,2008,28(6):130-133.
    [19] BOUREAU Y L, PONCE J, LECUN Y. A Theoretical analysis of feature pooling in visual recognition[M]. Omnipress: Madison WI USA, 2010.
    [20] 段瑞玲,李庆祥,李玉和. 图像边缘检测方法研究综述[J]. 光学技术,2005,31(3):415-419. doi:  10.3321/j.issn:1002-1582.2005.03.028

    DUAN R L,LI Q X,LI Y H. Summary of image edge detection[J]. Optical Technique,2005,31(3):415-419. doi:  10.3321/j.issn:1002-1582.2005.03.028
    [21] 姚佩雯. 基于火星遥感影像的“天问一号”着陆区及非极区的尘暴时空分布研究[D]. 青岛: 山东大学, 2021.

    YAO P W. Spatiotemporal distribution of dust dorm activity in Tianwen-1 landing area and Mars non-polar region based on Mars remote sensing images[D]. Qingdao: Shangdong University, 2021.
    [22] 王越,王彪,王汛,等. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文),2020,7(4):371-383.

    WANG Y,WANG B,WANG X,et al. Analysis and selection of landing areas for Mars mission[J]. Journal of Deep Space Exploration,2020,7(4):371-383.
  • [1] 徐青, 耿迅.  地外天体形貌测绘研究现状与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210162
    [2] 于志坚, 李海涛.  月球与行星探测测控系统建设与发展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210125
    [3] 刘奇祺, 陈楠, 林偲蔚.  月表可照时间谱和太阳辐射谱空间分布特征研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210100
    [4] 石海平, 陈燕, 贾阳, 屈严, 刘治钢, 王文强, 彭松.  太阳电池阵火星环境发电建模仿真 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200042
    [5] 艾素芬, 向艳超, 雷尧飞, 薛淑艳, 沈宇新, 殷雷, 刘佳, 陈维强.  火星车低密度纳米气凝胶隔热材料制备及性能研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200036
    [6] 王赤, 张贤国, 徐欣锋, 孙越强.  中国月球及深空空间环境探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.001
    [7] 孔令高, 张爱兵, 田峥, 郑香脂, 王文静, 刘勇, 丁建京.  自主火星探测高集成离子与中性粒子分析仪 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.005
    [8] 侯东辉, 张珅毅, RobertFWimmer-Schweingruber, 于佳, SoenkeBurmeister, 沈国红, 袁斌, 王春琴, 张斌全.  月球粒子辐射环境探测现状 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.003
    [9] 黄倩, 王太茂, 赵健楠, 孟治国.  “嫦娥4号”月球背面着陆区月壳及深部结构特征 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.01.006
    [10] 舒嵘, 徐卫明, 付中梁, 万雄, 袁汝俊.  深空探测中的激光诱导击穿光谱探测仪 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.007
    [11] 李建军, 王大轶.  摄动因素对火星环绕段轨道长期影响研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.01.012
    [12] 孟林智, 董捷, 许映乔, 王硕.  无人火星取样返回任务关键环节分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.003
    [13] 饶炜, 孙泽洲, 孟林智, 王闯, 吉龙.  火星着陆探测任务关键环节技术途径分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.004
    [14] 杨懿, 金双根, 薛岩松.  利用CRISM数据探测火星表面含水矿物及其演化 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.015
    [15] 刘建忠, 郭弟均, 籍进柱, 刘敬稳, 王庆龙.  月球的构造格架及其演化差异 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.011
    [16] 徐青, 耿迅, 蓝朝祯, 邢帅.  火星地形测绘研究综述 . 深空探测学报(中英文),
    [17] CliveNEAL, 平劲松.  月球仍然活跃的构造、火成和内部特征等证据 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.03.001
    [18] HideoHANADA, SeiitsuTSURUTA, KazuyoshiASARI, HiroshiARAKI, HirotomoNODA, ShingoKASHIMA, Ken-ichiFUNAZAKI, FuyuhikoKIKUCHI, KojiMATSUMOTO, YusukeKONO, HirooKUNIMORI, ShoSASAKI.  用于未来月球探测的ILOM 技术现状 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.03.006
    [19] AlexanderGUSEV, 孟治国, 平劲松, NataliaPETROVA, HideoHANADA.  多层月球模型的自转动力学与着陆探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.03.002
    [20] 张腾宇, 金双根, 崔祜涛.  利用数字高程模型自动检测火星表面陨石坑 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 修回日期:  2022-02-11
  • 网络出版日期:  2022-05-17

坡度变化率建模的低分辨率坡度补偿方法

doi: 10.15982/j.issn.2096-9287.2022.20210161
    基金项目:  国家自然科学基金(41771490,41941003); 中国科学院战略性先导科技专项(XDB41000000)
    作者简介:

    尹力(1996– ),女,硕士研究生,主要研究方向:行星摄影测量。E-mail:yinli19@mails.ucas.ac.cn

    刘斌(1984– ),男,副研究员,主要研究方向:航空航天摄影测量、卫星遥感影像的高精度定位、行星制图与遥感。本文通讯作者。通讯地址:北京市朝阳区大屯路甲20号北中国科学院空天信息创新研究院(100101)电话:(010)64807987E-mail:liubin@radi.ac.cn

  • ● An improved method for low-resolution slope compensation is proposed. By incorporating the change rate information of low-resolution slope to the compensation model, the compensation results of low-resolution slope are closer to the reference value of high-resolution slope. ● The model suitable for the low-resolution slope compensation of the entire lunar surface are supplied and the graded compensation models are supplemented. ● The low-resolution slope data covering 50 km×50 km of the Tianwen-1 landing site is compensated and topographic analysis is performed.
  • 中图分类号:  

摘要: 为解决月球、火星等行星表面缺乏高分辨率DEM(Digital Elevation Model)而造成的坡度低估问题,提出一种坡度变化率因子参与建模的低分辨率坡度补偿方法。方法对现有坡度补偿模型进行改进,在补偿模型中引入了坡度变化率参数,以提升坡度补偿的精度;利用月球和火星数据进行方法验证,选取覆盖多种地形的月球和火星低分辨率DEM,利用改进的方法进行坡度补偿,并利用高分辨率DEM生成的坡度做验证。实验结果表明:补偿后坡度较补偿前能更好地表征月球和火星表面的地形特征,且考虑坡度变化率的改进方法比传统的线性补偿方法更加有效。基于此方法,给出了适用于月球多地形的整体坡度补偿模型参数以及分级补偿模型参数,并对覆盖“天问一号”着陆点50 km×50 km的低分辨率火星坡度数据进行了补偿及分析应用。

注释:
1)  ● An improved method for low-resolution slope compensation is proposed. By incorporating the change rate information of low-resolution slope to the compensation model, the compensation results of low-resolution slope are closer to the reference value of high-resolution slope. ● The model suitable for the low-resolution slope compensation of the entire lunar surface are supplied and the graded compensation models are supplemented. ● The low-resolution slope data covering 50 km×50 km of the Tianwen-1 landing site is compensated and topographic analysis is performed.

English Abstract

尹力, 叶乐佳, 邸凯昌, 刘斌, 孙小珠, 王长焕, 薄正. 坡度变化率建模的低分辨率坡度补偿方法[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210161
引用本文: 尹力, 叶乐佳, 邸凯昌, 刘斌, 孙小珠, 王长焕, 薄正. 坡度变化率建模的低分辨率坡度补偿方法[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210161
YIN Li, YE Lejia, DI Kaichang, LIU Bin, SUN Xiaozhu, WANG Changhuan, BO Zheng. A Low-resolution Slope Compensation Method Involving Slope Change Rate[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210161
Citation: YIN Li, YE Lejia, DI Kaichang, LIU Bin, SUN Xiaozhu, WANG Changhuan, BO Zheng. A Low-resolution Slope Compensation Method Involving Slope Change Rate[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210161
参考文献 (22)

返回顶部

目录

    /

    返回文章
    返回