中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月壤微定量采样器设计与试验验证

张志恒 唐钧跃 张伟伟 孙凤 李鹏 王储 刘子恒 贺怀宇 刘冉冉 马如奇 姜生元

张志恒, 唐钧跃, 张伟伟, 孙凤, 李鹏, 王储, 刘子恒, 贺怀宇, 刘冉冉, 马如奇, 姜生元. 月壤微定量采样器设计与试验验证[J]. 深空探测学报(中英文), 2022, 9(2): 165-172. doi: 10.15982/j.issn.2096-9287.2022.20210148
引用本文: 张志恒, 唐钧跃, 张伟伟, 孙凤, 李鹏, 王储, 刘子恒, 贺怀宇, 刘冉冉, 马如奇, 姜生元. 月壤微定量采样器设计与试验验证[J]. 深空探测学报(中英文), 2022, 9(2): 165-172. doi: 10.15982/j.issn.2096-9287.2022.20210148
ZHANG Zhiheng, TANG Junyue, ZHANG Weiwei, SUN Feng, LI Peng, WANG Chu, LIU Ziheng, HE Huaiyu, LIU Ranran, MA Ruqi, JIANG Shengyuan. Micro Quantitative Sampler for Lunar Regolith: Design and Validation[J]. Journal of Deep Space Exploration, 2022, 9(2): 165-172. doi: 10.15982/j.issn.2096-9287.2022.20210148
Citation: ZHANG Zhiheng, TANG Junyue, ZHANG Weiwei, SUN Feng, LI Peng, WANG Chu, LIU Ziheng, HE Huaiyu, LIU Ranran, MA Ruqi, JIANG Shengyuan. Micro Quantitative Sampler for Lunar Regolith: Design and Validation[J]. Journal of Deep Space Exploration, 2022, 9(2): 165-172. doi: 10.15982/j.issn.2096-9287.2022.20210148

月壤微定量采样器设计与试验验证

doi: 10.15982/j.issn.2096-9287.2022.20210148
基金项目: 国家自然科学基金资助项目(52105549,52005136);中国博士后面上资助项目(2021M690828);黑龙江省博士后资助项目(LBH-Z20145);机器人技术与系统国家重点实验室(哈尔滨工业大学)自主研究课题资助项目(SKLRS202113B)
详细信息
    作者简介:

    张志恒(1995– ),男,博士生,主要研究方向:星壤无人采样探测及挥发分制备技术。通讯地址:哈尔滨市南岗区一匡街2号哈工大科学园科创大厦J1609室(150001)电话:(0451)86413857E-mail:zhangbtr@163.com

    姜生元(1969– ),男,教授,博士生导师,主要研究方向:地外天体采样探测、星表智能作业机器人、宇航空间机构及控制。本文通讯作者。通讯地址:哈尔滨工业大学科学园科创大厦(150001)电话:13796621169E-mail:jiangshy@hit.edu.cn

  • ● A new method was proposed to sample the lunar regolith. ● Induction heating was applied to heat the sampler and the lunar regolith was heated indirectly. ● The amount of sample is away from the target amount as the moisture content of the regolith increases. ● The sampler is heated to 1 035 ℃ at 85 W by induction heating.
  • 中图分类号: V11

Micro Quantitative Sampler for Lunar Regolith: Design and Validation

  • 摘要: 根据月球极区的环境和工况,分析了科学探测仪器对月壤样本的实际需求,提出一种将采样与挥发分提取相耦合的挥发分制备方法。通过设计一种采样片,完成月壤的微定量采样,多个采样片串联装于采样管内组成采样器。采样后将采样片置于提取装置中加热,以感应加热的方式间接加热内部的月壤,完成挥发分制备。针对地外天体采样功能需求,对采样器和采样片工作原理和关键结构参数进行了设计,开展了拟实环境下的月壤微量采样性能验证试验,结果表明月壤含水率越低,采样量越接近目标值;初步加热试验表明该方案能够在指定功率下将采样片加热至目标温度。可用于未来的深空探测挥发分原位分析。
    Highlights
    ● A new method was proposed to sample the lunar regolith. ● Induction heating was applied to heat the sampler and the lunar regolith was heated indirectly. ● The amount of sample is away from the target amount as the moisture content of the regolith increases. ● The sampler is heated to 1 035 ℃ at 85 W by induction heating.
  • 图  1  挥发分探测器组成及布局示意图

    Fig.  1  Diagram of composition and layout of volatile detector

    图  2  采样器采样原理

    Fig.  2  Sampler sampling principle

    图  3  采样管工作原理图

    Fig.  3  Working principle diagram of sampling tube

    图  4  采样片组成及采样原理

    Fig.  4  Composition and sampling principle of sampling slice

    图  5  采样片结构参数定义

    Fig.  5  Definition of sampling slice structure parameters

    图  6  采样性能测试平台

    Fig.  6  Testing platform of sampling performance

    图  7  不同含水率下月壤采样量随时间变化关系

    Fig.  7  Relationship between sampling amount and time of different soil moisture contents

    图  8  加热时磁场分布图

    Fig.  8  Magnetic field distribution during heating process

    图  9  加热180 s后采样片温度分布

    Fig.  9  Temperature distribution of heated sampler after 180 s

    图  10  仿真的加热过程中采样片温度变化

    Fig.  10  Simulations of heating temperature of sampler

    图  11  真空罐内加热试验

    Fig.  11  Vacuum heating tests

    图  12  验证试验中采样片加热温度变化曲线

    Fig.  12  Heating temperature changes of sampler during validation experiments

    表  1  月球极区环境特点及对采样和挥发分制备的影响

    Table  1  Lunar polar environment and its influence on sampling and volatile fraction preparation

    序号环境特点环境特点对采样的影响
    1极低温月球极区环境及月壤温度低至−180 ℃,月壤硬度高,工况复杂,对采样造成较大挑战
    2高真空月面真空度为10−13 Pa左右,对采样影响较小,由于无对流传热,利于挥发分制备
    3微重力月面重力为地面的1/6,会对本方案中采样时月壤颗粒的流动造成一定的积极影响
    下载: 导出CSV

    表  2  挥发分探测器的性能要求

    Table  2  Performance requirements for volatile detector

    序号要求指标
    1样品质量/mg80 ± 5
    2样品加热温度/℃1 000 ± 20
    3样本粒径/μm100
    下载: 导出CSV

    表  3  微量采样器结构参数

    Table  3  Parameters of micro sampler

    序号结构参数数值/mm
    1L1320
    2L2330
    3L3250
    4d12
    下载: 导出CSV

    表  4  采样管参数表

    Table  4  Sample tube parameter

    指标名称指标参数
    尺寸Φ/mm12 × 330
    采样片数量/个50
    最大采样深度hd/mm330
    作业方式回转 + 进给
    回转速度vω/(r∙min−110
    进给速度vf/(mm∙min−18
    驱动绳材料凯夫拉
    质量mc/g450
    回转功率Pm/W10
    电机额定转矩Tm/(N·m)1.57
    下载: 导出CSV

    表  5  采样片结构参数

    Table  5  Sampling slice structure parameters

    指标名称指标参数
    外径D a/mm12
    内径da/mm6
    高度H a/mm3
    结构体积占比η/%50
    层高f 1/μm500
    700
    800
    壁厚s w/μm100
    封装物厚度s p//μm500
    下载: 导出CSV

    表  6  加热仿真所需参数表

    Table  6  Parameters of simulations of heating sampler

    指标 采样片线圈
    热导率W/(m•K)78400
    密度/(g•cm-3)4.28.9
    比热容J/(kg•℃)700385
    相对磁导率2 000
    电导率/(S•m-1106
    下载: 导出CSV
  • [1] 叶培建,于登云,孙泽洲,等. 中国月球探测器的成就与展望[J]. 深空探测学报(中英文),2016,3(4):323-333.

    YE P J,YU D Y,SUN Z Z,et al. Achievements and prospect of Chinese lunar probes[J]. Journal of Deep Space Exploration,2016,3(4):323-333.
    [2] 胡智新. 月球表面水冰探测进展[J]. 航天器工程,2010,19(5):111-116. doi:  10.3969/j.issn.1673-8748.2010.05.019

    HU Z X. Progress in the detection of water ice on the lunar surface[J]. Spacecraft Engineering,2010,19(5):111-116. doi:  10.3969/j.issn.1673-8748.2010.05.019
    [3] 王超,张晓静,姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文),2020,7(3):241-247.

    WANG C,ZHANG X J,YAO W. Research progress on in situ exploitation of water ice resources in the lunar polar region[J]. Journal of Deep Space Exploration,2020,7(3):241-247.
    [4] SMITH T,HE H Y,LIU R R. The exploration of Neptune:a noble gas and volatile perspective[J]. Journal of Deep Space Exploration,2020,7(6):584-604.
    [5] IVANOV A V. Volatiles in lunar regolith samples:a survey[J]. Solar System Research,2014,48(2):120-138.
    [6] THOMSON B,BUSSEY D,NEISH C,et al. An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar[J]. Geophysical Research Letters,2012,39(14):1-4.
    [7] NONEMAN S. Is there water on the Moon? NASA’s LCROSS mission: MSFC-5404[R]. Washington, DC: NASA, 2007.
    [8] HAYNE P O,HENDRIX A,NASH E S,et al. Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements[J]. Icarus,2015,255:58-69. doi:  10.1016/j.icarus.2015.03.032
    [9] 叶培建,黄江川,孙泽洲,等. 中国月球探测器发展历程和经验初探[J]. 中国科学:技术科学,2014,44(6):543-558. doi:  10.1360/N092014-00150

    YE P J,HUANG J C,SUN Z Z,et al. The process and experience in the development of Chinese lunar probe[J]. Scientia Sinica Technologica,2014,44(6):543-558. doi:  10.1360/N092014-00150
    [10] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17.

    WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17.
    [11] DREYER C B, SOWERS G, WILLIAMS H. Ice mining in lunar permanently shadowed regions[C]//Space Resources Roundtable XIX/Planetary & Terrestrial Mining Sciences Symposium. Golden, CO: [s. n. ], 2018.
    [12] ZACNY K, CHU P, PAULSEN G, et al. Mobile in-situ water extractor(MISWE)for Mars, Moon, and asteroids in situ resource utilization[C]//AIAA Space 2012 Conference & Exposition. Pasadena, California: AIAA, 2012.
    [13] MITROFANOV I G,SANIN A B,BOYNTON W V,et al. Hydrogen mapping of the lunar south pole using the LRO neutron detect or experiment LEND[J]. Science,2010,330(6003):483-486. doi:  10.1126/science.1185696
    [14] 侯建文,赵晨,常立平,等. 未来月球探测总体构想[J]. 载人航天,2015,21(5):425-434. doi:  10.3969/j.issn.1674-5825.2015.05.001

    HOU J W,ZHAO C,CHANG L P,et al. General conception of future lunar exploration[J]. Manned Spaceflight,2015,21(5):425-434. doi:  10.3969/j.issn.1674-5825.2015.05.001
    [15] LIZIA P D, ZAZZERA A A, FINZI A E, et al. Planning and implementation of the on-comet operations of the instrument SD2 onboard the lander Philae of Rosetta mission[J]. Acta Astronautica, 2015, 125: 183-195.
    [16] RAMPE E B, BLAKE D F, BRISTOW T F, et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: a review after six earth years of exploration with curiosity[J]. Geochemistry , 2020 , 80(2): 125605.
    [17] KATE I,GARDIFF E H,DWORKIN J P,et al. VAPoR – volatile analysis by pyrolysis of regolith - an instrument for in situ detection of water,noble gases,and organics on the Moon[J]. Planetary & Space Science,2010,58(7-8):1007-1017.
    [18] MAHAFFY P R,WEBSTER C R,CABANE M,et al. The sample analysis at mars investigation and instrument suite[J]. Space Science Reviews,2012,170(1):401-478.
    [19] SZOPA C,GOESMANN F,ROSENBAUER H,et al. The COSAC experiment of the Rosetta mission:performance under representative conditions and expected scientific return[J]. Advances in Space Research,2007,40(2):180-186. doi:  10.1016/j.asr.2007.04.086
    [20] GRANT H, DAVID, T, BEVAN M. Lunar source book[M]. Cambridge: Cambridge University Press, 1991.
  • [1] 刘佳, 刘斌, 邸凯昌, 岳宗玉, 于天一, 王镓, 芶盛.  “天问一号”着陆区地貌解译与定量分析 . 深空探测学报(中英文), 2022, 9(3): 1-9. doi: 10.15982/j.issn.2096-9287.2022
    [2] 孙淼, 张鸿宇, 迟润强, 庞宝君, 肖俊孝, 范锦彪, 钱成, 卢孜筱, 姜生元.  侵彻式月壤探测地面模拟试验研究 . 深空探测学报(中英文), 2022, 9(2): 141-149. doi: 10.15982/j.issn.2096-9287.2022.20210149
    [3] 姜生元, 张伟伟, 杨宇彬, 李红浪, 贺怀宇, 张熇, 黄江川, 邓宗全.  动能侵彻式星壤物性原位触探技术研究进展 . 深空探测学报(中英文), 2022, 9(2): 114-122. doi: 10.15982/j.issn.2096-9287.2022.20191106001
    [4] 肖俊孝, 庞宝君, 唐钧跃, 迟润强, 陈圣鹏, 刘君巍, 田野, 张伟伟, 姜生元.  月壤水冰模拟样本SHPB试验及反射波特性分析 . 深空探测学报(中英文), 2022, 9(2): 150-156. doi: 10.15982/j.issn.2096-9287.2022.20210154
    [5] 刘君巍, 汪恩良, 田野, 刘兴超, 唐亮, 崔江磊, 陶立军, 葛坦龙, 卢孜筱, 张伟伟, 唐钧跃, 姜生元.  月壤水冰组构模拟及力学特性测试分析 . 深空探测学报(中英文), 2022, 9(2): 134-140. doi: 10.15982/j.issn.2096-9287.2022.20210153
    [6] 张宽, 于天一, 胡晓东, 刘传凯, 李立春, 赵焕洲.  月面表层无人采样控制技术 . 深空探测学报(中英文), 2022, 9(2): 173-182. doi: 10.15982/j.issn.2096-9287.2022.20210052
    [7] 孙凤, 霍晓文, 茅冒, 赵海宁, 徐方超, 张伟伟, 陈化智, 唐钧跃, 张晓友, 杨旭, 刘雅芳, 姜生元.  双体振贯采样磁力驱动式月壤采样器设计 . 深空探测学报(中英文), 2022, 9(2): 157-164. doi: 10.15982/j.issn.2096-9287.2022.20210150
    [8] 王迎春, 王国欣, 赵帆, 张鼐, 王书超.  深层月壤钻取冗余绕组电机控制方法 . 深空探测学报(中英文), 2021, 8(3): 259-268. doi: 10.15982/j.issn.2096-9287.2021.20210014
    [9] 胡晓东, 张宽, 谢圆, 张辉, 卢皓, 刘传凯, 陈翔, 赵焕洲, 谢剑锋.  “嫦娥五号”月面采样机械臂路径规划 . 深空探测学报(中英文), 2021, 8(6): 564-571. doi: 10.15982/j.issn.2096-9287.2021.20210095
    [10] 庞勇, 王国欣, 汤滨, 王书超, 赵忠贤.  月球浅层月壤螺旋钻具进芯机制设计 . 深空探测学报(中英文), 2021, 8(3): 252-258. doi: 10.15982/j.issn.2096-9287.2021.20210019
    [11] 辛鹏飞, 吴跃民, 荣吉利, 危清清, 刘宾, 刘鑫.  月面探测器圆形薄膜太阳翼展开动力学建模与分析 . 深空探测学报(中英文), 2020, 7(3): 255-263. doi: 10.15982/j.issn.2095-7777.2020.20191128005
    [12] 刘德赟, 张熇, 杨帅, 殷参, 张加波, 孙启臣, 赖小明.  月球极区钻取采样技术 . 深空探测学报(中英文), 2020, 7(3): 278-289. doi: 10.15982/j.issn.2095-7777.2020.20191101008
    [13] 林云成, 李立犇, 赵振家, 张荣荣, 金聪, 邹猛.  着陆器足垫冲击月壤动态行为离散元仿真分析 . 深空探测学报(中英文), 2020, 7(2): 171-177. doi: 10.15982/j.issn.2095-7777.2020.20190313002
    [14] 逯运通, 张正峰, 傅子敬, 张旭辉.  一种深空粒子采样返回探测器构型设想 . 深空探测学报(中英文), 2019, 6(1): 96-102. doi: 10.15982/j.issn.2095-7777.2019.01.014
    [15] 刘德赟, 赖小明, 王露斯, 刘晓庆, 赵曾, 张加波, 全齐全.  小天体表面采样技术综述 . 深空探测学报(中英文), 2018, 5(3): 246-261. doi: 10.15982/j.issn.2095-7777.2018.3.007
    [16] 耿金越, 熊子昌, 龙军, 沈岩, 刘旭辉, 陈君.  微阴极电弧推力器研究进展 . 深空探测学报(中英文), 2017, 4(3): 212-218,231. doi: 10.15982/j.issn.2095-7777.2017.03.002
    [17] 赖小明, 杜志豪, 王国峰, 王国欣, 莫桂冬.  月壤取芯钻具热特性有限元分析 . 深空探测学报(中英文), 2017, 4(6): 544-551. doi: 10.15982/j.issn.2095-7777.2017.06.007
    [18] 沈毅, 王冬, 姜生元, 刘杰, 张伟伟, 陈化智, 邓宗全.  月壤剖面冲击贯入式探测方案研究 . 深空探测学报(中英文), 2015, 2(3): 213-217. doi: 10.15982/j.issn.2095-7777.2015.03.004
    [19] 姜生元, 沈毅, 吴湘, 邓宗全, 赖小明, 张家强, 梁鲁, 周琴.  月面广义资源探测及其原位利用技术构想 . 深空探测学报(中英文), 2015, 2(4): 291-301. doi: 10.15982/j.issn.2095-7777.2015.04.001
    [20] 郑燕红, 邓湘金, 赵志晖, 姚猛, 邹昕.  月面回转钻进采样非脆弱鲁棒控制 . 深空探测学报(中英文), 2014, 1(4): 315-319. doi: 10.15982/j.issn.2095-7777.2014.04.012
  • 加载中
图(12) / 表 (6)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  5
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-03-19
  • 刊出日期:  2022-05-06

月壤微定量采样器设计与试验验证

doi: 10.15982/j.issn.2096-9287.2022.20210148
    基金项目:  国家自然科学基金资助项目(52105549,52005136);中国博士后面上资助项目(2021M690828);黑龙江省博士后资助项目(LBH-Z20145);机器人技术与系统国家重点实验室(哈尔滨工业大学)自主研究课题资助项目(SKLRS202113B)
    作者简介:

    张志恒(1995– ),男,博士生,主要研究方向:星壤无人采样探测及挥发分制备技术。通讯地址:哈尔滨市南岗区一匡街2号哈工大科学园科创大厦J1609室(150001)电话:(0451)86413857E-mail:zhangbtr@163.com

    姜生元(1969– ),男,教授,博士生导师,主要研究方向:地外天体采样探测、星表智能作业机器人、宇航空间机构及控制。本文通讯作者。通讯地址:哈尔滨工业大学科学园科创大厦(150001)电话:13796621169E-mail:jiangshy@hit.edu.cn

  • ● A new method was proposed to sample the lunar regolith. ● Induction heating was applied to heat the sampler and the lunar regolith was heated indirectly. ● The amount of sample is away from the target amount as the moisture content of the regolith increases. ● The sampler is heated to 1 035 ℃ at 85 W by induction heating.
  • 中图分类号: V11

摘要: 根据月球极区的环境和工况,分析了科学探测仪器对月壤样本的实际需求,提出一种将采样与挥发分提取相耦合的挥发分制备方法。通过设计一种采样片,完成月壤的微定量采样,多个采样片串联装于采样管内组成采样器。采样后将采样片置于提取装置中加热,以感应加热的方式间接加热内部的月壤,完成挥发分制备。针对地外天体采样功能需求,对采样器和采样片工作原理和关键结构参数进行了设计,开展了拟实环境下的月壤微量采样性能验证试验,结果表明月壤含水率越低,采样量越接近目标值;初步加热试验表明该方案能够在指定功率下将采样片加热至目标温度。可用于未来的深空探测挥发分原位分析。

注释:
1)  ● A new method was proposed to sample the lunar regolith. ● Induction heating was applied to heat the sampler and the lunar regolith was heated indirectly. ● The amount of sample is away from the target amount as the moisture content of the regolith increases. ● The sampler is heated to 1 035 ℃ at 85 W by induction heating.

English Abstract

张志恒, 唐钧跃, 张伟伟, 孙凤, 李鹏, 王储, 刘子恒, 贺怀宇, 刘冉冉, 马如奇, 姜生元. 月壤微定量采样器设计与试验验证[J]. 深空探测学报(中英文), 2022, 9(2): 165-172. doi: 10.15982/j.issn.2096-9287.2022.20210148
引用本文: 张志恒, 唐钧跃, 张伟伟, 孙凤, 李鹏, 王储, 刘子恒, 贺怀宇, 刘冉冉, 马如奇, 姜生元. 月壤微定量采样器设计与试验验证[J]. 深空探测学报(中英文), 2022, 9(2): 165-172. doi: 10.15982/j.issn.2096-9287.2022.20210148
ZHANG Zhiheng, TANG Junyue, ZHANG Weiwei, SUN Feng, LI Peng, WANG Chu, LIU Ziheng, HE Huaiyu, LIU Ranran, MA Ruqi, JIANG Shengyuan. Micro Quantitative Sampler for Lunar Regolith: Design and Validation[J]. Journal of Deep Space Exploration, 2022, 9(2): 165-172. doi: 10.15982/j.issn.2096-9287.2022.20210148
Citation: ZHANG Zhiheng, TANG Junyue, ZHANG Weiwei, SUN Feng, LI Peng, WANG Chu, LIU Ziheng, HE Huaiyu, LIU Ranran, MA Ruqi, JIANG Shengyuan. Micro Quantitative Sampler for Lunar Regolith: Design and Validation[J]. Journal of Deep Space Exploration, 2022, 9(2): 165-172. doi: 10.15982/j.issn.2096-9287.2022.20210148
    • 月壤中包含多种挥发分成分,主要有H2、CO2、N2、CH4、H2O和稀有气体等低沸点的单质和化合物[1-4]。这些挥发分的含量和分布情况不仅可以揭示月球的形成和演化过程,还是未来月球科研站重要的可利用资源[5-8]。为保证科学仪器对挥发分测量与分析结果的准确性,防止在采样返回过程中因盛样容器温度和压力的变化及冲击振动的影响导致挥发分丢失和改变,挥发分的制备和分析必须保证原位测量[9-12]。同时,科学分析仪器的测量精度要高,常规的克级月壤样品含有的挥发分含量过高,不利于原位测定精度的保证[13-15],对月壤样品的质量需求通常100 mg量级,且月壤样品的粒径要求小于100 μm,以保证月壤中的挥发分均可以充分逸出,因此对月壤采样提出了采样量少和粒径筛分的要求。此外,为确定月壤中各挥发分的含量,需要对月壤样本定量采集,对采样的样本质量精度提出了要求。综上,用于科学分析的月壤样品采集技术不仅需要所采样品有较高的质量精度,采集的月壤量非常少,还需克服采样时所处的真空低温月面环境,是一项富有意义且难度较大的关键技术。

      已有多次探测任务对不同星球的星壤挥发分进行了测量。其中,包括“罗塞塔号”(Rosetta)采用的钻进取芯方式,完成了对彗星的采样[16],该采样方法无法准确地控制采样量及粒径分布。美国国家航空航天局(National Aeronautics Space and Administration,NASA)对火星开展的多次探测中也对火星样本进行了采样分析,在“凤凰号”(Phoenix)火星的探测任务中,采用表铲的方式获取了火星表面的星壤样本,这种方式不仅无法完成样本的定量,且在采样的过程中样本粒径、样本体积等方面存在不确定性;“好奇号”(Curiosity)对火星开展的探测中所采用的方法为钻杆进样,增加一个具有样本筛分和定量功能的样本处理单元,通过调整样本处理单元的姿态角度完成筛分和定量[17],该方法可有效解决定量和定粒径的问题,但付出的资源代价巨大、效率较低,且管路通道较长,存在样品被污染的风险。美国将于近几年发射挥发性物质调查极地探测(Volatiles Investigating Polar Exploration Rover,VIPER)月球车用于探测水冰物质[18],其采样方式为通过钻具上的螺旋翼将月壤转移至月面,通过毛刷与螺旋翼之间类似蜗轮蜗杆的啮合传动将螺旋翼内月壤扫入落料槽道内,这种方式较新颖,但仍无法控制采样量和粒径。综上所述,当前已有的采样方案无法高精度控制样本的采样量,无法满足精度较高的科学分析需求。

      采集到月壤后还需将其加热至一定温度,使月壤内部的挥发分热解后充分逸出,不同成分的挥发分其相变点也不尽相同。国外的深空探测任务中,对星壤的加热方式均采用电阻炉加热,通过在耐高温的炉子内部缠绕电阻率较高且耐高温的金属丝,通电后将炉壁加热并传导至星壤,将星壤加热至目标温度,获取星壤的挥发分[19-20]。这种通过热传导加热星壤的方式不仅功率需求较高、资源消耗大,还无法快速加热星壤,时间代价也较大。

      本文设计了一种以多孔栅格为主体构型,旋转与进给运动耦合的一种月壤微定量采样器,解决对月壤采集时的微量定量需求。同时,以感应加热的方式将采样片加热,继而通过热传导将采样片内部的月壤加热,获取其中的挥发分,可高效、快速地完成挥发分的提取工作。

    • 为进一步提高人类对月球的认识,中国计划在近几年发射探测器前往月球极区测量多种挥发分的含量及分布,这对人类重新认识月球的演化规律有着重要的意义。多国的环月探测结果显示,由于月球极区常年处于极低温状态,有水分子以月壤水冰的形式赋存于极区浅层范围内,对这些资源的原位探测将为月球资源开发奠定基础。挥发分探测器通过机械臂采取微量月壤样本后置于加热炉内,分梯度逐步将月壤加热至1 000 ℃,获取不同沸点的挥发分。挥发分探测器上主要包含剖面钻及采样管、挥发分制备舱和挥发分测量舱,分别完成月壤采样、挥发分制备与分析,如图1所示,剖面钻和采样管安装于机械臂末端,挥发分制备舱安装于舱壁外侧,挥发分测量舱安装于舱内。

      图  1  挥发分探测器组成及布局示意图

      Figure 1.  Diagram of composition and layout of volatile detector

      微量定量采样器在设计时需考虑月面环境对采样造成的影响,要符合月球极区采样的环境要求,月球极区的环境特点和对采样的影响如表1所示。综上所述,在月球极区采样时需要考虑较复杂的工况及采样器对极低温的适应性等,对挥发分制备而言影响较小。根据工程任务的目的和实际作业的工况,挥发分探测器对采样和挥发分制备的性能要求如表2所示。

      表 1  月球极区环境特点及对采样和挥发分制备的影响

      Table 1.  Lunar polar environment and its influence on sampling and volatile fraction preparation

      序号环境特点环境特点对采样的影响
      1极低温月球极区环境及月壤温度低至−180 ℃,月壤硬度高,工况复杂,对采样造成较大挑战
      2高真空月面真空度为10−13 Pa左右,对采样影响较小,由于无对流传热,利于挥发分制备
      3微重力月面重力为地面的1/6,会对本方案中采样时月壤颗粒的流动造成一定的积极影响

      表 2  挥发分探测器的性能要求

      Table 2.  Performance requirements for volatile detector

      序号要求指标
      1样品质量/mg80 ± 5
      2样品加热温度/℃1 000 ± 20
      3样本粒径/μm100
    • 微定量采样器由采样管和安装于采样管内部的采样片组成,和剖面钻一起与机械臂相连,由驱动组件提供回转运动,机械臂提供进给运动,其组成如图2所示,主要结构参数如表3所示。

      图  2  采样器采样原理

      Figure 2.  Sampler sampling principle

      表 3  微量采样器结构参数

      Table 3.  Parameters of micro sampler

      序号结构参数数值/mm
      1L1320
      2L2330
      3L3250
      4d12

      采样管的设计方案如图3所示,采样片以堆栈的形式顺次置于采样管内部,在最左侧的采样片前端设计有推送滑块,推送滑块外径两侧连接有驱动绳,驱动绳另一端绕过采样管右端壁孔后,再向左侧连接到缠线卷盘上,由电机驱动缠线卷盘回转,驱动绳受拉,推送滑块在驱动绳拖拽下可将内部的采样片向外推出,将装有月壤样本的采样片转移到月壤加热单元中。驱动电机反转可带动采样管转动,同时在单向机构作用下,缠线转盘不产生回转动作,在确保样品扰动温升的前提下,利用机械臂及自身驱动组件实现采样器的多次往复旋压式样本定质定量采集,以此实现剖面点位采样、毫克级定质定量、低扰动3个先进性目标。微定量采样器整体设计参数如表4所示。

      图  3  采样管工作原理图

      Figure 3.  Working principle diagram of sampling tube

      表 4  采样管参数表

      Table 4.  Sample tube parameter

      指标名称指标参数
      尺寸Φ/mm12 × 330
      采样片数量/个50
      最大采样深度hd/mm330
      作业方式回转 + 进给
      回转速度vω/(r∙min−110
      进给速度vf/(mm∙min−18
      驱动绳材料凯夫拉
      质量mc/g450
      回转功率Pm/W10
      电机额定转矩Tm/(N·m)1.57
    • 绳驱推送式末端采样管中预装了若干采样片,采样片由多层基体、强制骨架和三维编制工艺形成的微孔型栅格内部结构组成,多层基体可提高采样片的强度,强制骨架在采样片旋压取样时将大颗粒月壤扫除,孔径沿轴向从下往上逐渐递增,采样片可进行定密实度、定孔隙率、定体积的精准采样,图4为采样片的结构及采样原理。

      图  4  采样片组成及采样原理

      Figure 4.  Composition and sampling principle of sampling slice

      1)鉴于月壤最大粒径受进样孔尺寸约束,即进样月壤粒径≤ds,即实现月壤颗粒的粒径筛选功能,如图4(a)所示;

      2)鉴于采样容腔内部体积为定值,随着月壤颗粒的逐渐填充,容腔内的月壤颗粒逐渐挤密,颗粒体积将趋于定值Vs,即实现月壤采样的定容积功能;

      3)容腔内月壤的体积趋于定值后,其整体密实度也将趋于定值,即月壤颗粒的质量将趋于定值ms,即实现月壤采样的定密实度和定质量。

    • 根据科学仪器对月壤的采样需求,月壤的物理及力学性能,设计一种通过旋压动作完成月壤颗粒收集的采样片。微定量采样片的结构如图5所示,月壤颗粒通过采样底座上的微孔进入采样腔内,顶盖将采样片封闭,与采样底座配合形成采样腔体。

      图  5  采样片结构参数定义

      Figure 5.  Definition of sampling slice structure parameters

      由于采样片需要兼具采样和被加热两种功能,在结构设计的时候需要综合考虑这两方面的因素,鉴于磁场的空间分布和采样时旋转轴附近的线速度较低,将采样片设计成圆环型的空腔结构。参考文献[20],月壤密度范围1.6 ~ 1.9 g/cm3,在此选定1.8 g/cm3计算。考虑定量采样要求结合剖面钻外径限制,在此将采样片外径Da = 12 mm,内径da = 6 mm,高度H = 3 mm;同时为兼顾结构强度要求,采样片的封装物厚度sp = 0.5 mm。根据采样需求和轻量化设计要求,采样片的结构参数汇总于表5

      表 5  采样片结构参数

      Table 5.  Sampling slice structure parameters

      指标名称指标参数
      外径D a/mm12
      内径da/mm6
      高度H a/mm3
      结构体积占比η/%50
      层高f 1/μm500
      700
      800
      壁厚s w/μm100
      封装物厚度s p//μm500
    • 为验证采样片可以对不同采样工况具备定量采样性能,针对不同含水率的月壤样品开展了采样试验,采样性能测试平台如图6所示。采样片安装于连接柄的一端,另一端与夹头固连,由驱动电机带动产生回转运动。平台上方的进给电机通过链条带动平台上下移动,实现采样片的进给运动。月壤桶外壁为空心结构,倒入液氮后可使月壤保持低温状态。

      试验中所用样本的温度–180℃,密度ρ = 1.8 g/cm3,含水率分别为0、1 、2 、5 wt%。选定采样片的回转速度和进给速度分别为60 r/min和5 mm/min。试验结果如图7所示,采样目标80 ± 5 mg,在图7中浅红色区域内。

      图  6  采样性能测试平台

      Figure 6.  Testing platform of sampling performance

      图  7  不同含水率下月壤采样量随时间变化关系

      Figure 7.  Relationship between sampling amount and time of different soil moisture contents

      从图7中可以看出,随着采样时间增加,采样量逐渐上升,在60 s时采样速率大幅下降,120 s左右达到最大采样量;在月壤含水率0~5 wt%的范围内,月壤含水率增加,采样量减少,这是由于含水率增加使得粘结的月壤颗粒增多,颗粒团的粒径增大,对月壤进入采样片造成一定的影响。

    • 1)感应加热性能仿真

      对采样片被感应加热的过程进行了多物理场仿真,探究其升温速率。根据设计状态设定仿真中所需材料参数,如表6所示。线圈功率设定85 W。

      表 6  加热仿真所需参数表

      Table 6.  Parameters of simulations of heating sampler

      指标 采样片线圈
      热导率W/(m•K)78400
      密度/(g•cm-3)4.28.9
      比热容J/(kg•℃)700385
      相对磁导率2 000
      电导率/(S•m-1106

      感应加热时采样片周围的交变磁场分布如图8所示。采样片所处位置为磁感应强度的最大区域,利于在采样片上产生涡流以将其加热。

      图  8  加热时磁场分布图

      Figure 8.  Magnetic field distribution during heating process

      加热180 s后采样片的温度达到1 000 ℃以上,温度分布如图9所示,可以看出,采样片的温度均匀性较好,温度极差在5 ℃以内。

      图  9  加热180 s后采样片温度分布

      Figure 9.  Temperature distribution of heated sampler after 180 s

      加热过程中采样片的升温曲线如图10所示。升温速率在刚开始加热时较快,随后逐渐放缓。

      图  10  仿真的加热过程中采样片温度变化

      Figure 10.  Simulations of heating temperature of sampler

      2)加热验证试验

      为验证真空条件下采样片内月壤的加热效率,以感应加热的方式,开展真空环境下的微定量采样片加热性能验证试验,选用居里点950 ℃的铁钴合金作为采样片的材料。将感应线圈设计于炉体外部,采样片被加热时可以阻隔大量来自采样片的热辐射,防止感应线圈温度过高,提高线圈效率。感应加热性能试验在真空罐内开展,主要仪器和设备包含真空罐、热成像仪、感应器、驱动板、采样片及加热炉,如图11所示。在加热功率85 W的条件下,在150 s内将采样片从20 ℃加热至1 035 ℃,变化曲线如图12所示,加热温度迅速升高,之后升温速率逐渐放缓,这是由于随着温度升高,热辐射的损失越来越多,同时采样片材料的相对磁导率随温度升高而降低,导致升温速率逐渐放缓。该试验验证了通过将采样片加热,间接加热月壤以制备挥发分的方案是可行的,同时,与加热的仿真结果有较好的拟合度。

      图  11  真空罐内加热试验

      Figure 11.  Vacuum heating tests

      图  12  验证试验中采样片加热温度变化曲线

      Figure 12.  Heating temperature changes of sampler during validation experiments

    • 本文设计了一种月壤微定量采样器,根据任务研制需求,对采样片与采样管的布局方式和采样片的结构进行设计,并针对低温月壤,进行了采样试验和加热性能试验。得到的结论如下:

      1)验证了微定量采样片对月壤采样的可行性,月壤含水率越低,采样片的实际采样量越接近目标值,后续需要进一步优化采样片的构型以增强其多工况适应性;

      2)采样时月壤的含水率越低,采样片达到饱和填充状态的速率越快;

      3)以感应加热的方式加热采样片可以达到挥发分制备的功能要求。

      未来将会继续聚焦于微量采样的多工况适应能力和采样速率的提升,兼顾加热方面的优化设计,降低加热所需功率,并从轻量化方向进一步降低工程代价。

参考文献 (20)

目录

    /

    返回文章
    返回