中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄道面内多目标小行星飞越探测任务轨道优化设计

郝志鑫 郑建华 李明涛

郝志鑫, 郑建华, 李明涛. 黄道面内多目标小行星飞越探测任务轨道优化设计[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210143
引用本文: 郝志鑫, 郑建华, 李明涛. 黄道面内多目标小行星飞越探测任务轨道优化设计[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210143
HAO Zhixin, ZHENG Jianhua, LI Mingtao. Trajectory Optimization Design for Multiple-Target Asteroid Flyby Mission in Ecliptic Plane[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210143
Citation: HAO Zhixin, ZHENG Jianhua, LI Mingtao. Trajectory Optimization Design for Multiple-Target Asteroid Flyby Mission in Ecliptic Plane[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210143

黄道面内多目标小行星飞越探测任务轨道优化设计

doi: 10.15982/j.issn.2096-9287.2022.20210143
基金项目: 空间碎片和小行星专项资助项目(kjsp2020020101)
详细信息
    作者简介:

    郝志鑫(1996– ),男,硕士,主要研究方向:复杂空间任务序列规划与轨道优化设计。通讯地址:中国科学院国家空间科学中心(101499)E-mail:haozhixin19@mails.ucas.ac.cn

    郑建华(1966– ),女,研究员,主要研究方向:卫星自主导航、小卫星编队飞行动力学与控制技术、深空探测器节能轨道设计技术等。通讯地址:中国科学院国家空间科学中心(101499)E-mail:zhengjianhua@nssc.ac.cn

    李明涛(1982– ),男,研究员,主要研究方向:航天动力学与控制、行星防御与利用。通讯地址:中国科学院国家空间科学中心(101499)E-mail:limingtao@nssc.ac.cn

  • ● The trajectory of multi-target asteroid flyby mission is solved fast and effectively by using the basic strategy of ecliptic in-plane flyover and beam search algorithm. ● Simulation results show that the mission is not sensitive to the launch window and the mission launch window from 2024 to 2028 can flyby at least 18 potentially hazardous asteroids. ● Combined with the constraints of launch vehicle and fuel to mass ratio of satellite,this method can quickly determine the number of sequential flyby asteroids in a single mission.
  • 中图分类号: V529.2

Trajectory Optimization Design for Multiple-Target Asteroid Flyby Mission in Ecliptic Plane

  • 摘要: 近距离飞越小行星可获取小行星的表面图像、测量小行星的光谱、反演小行星物理化学性质。对潜在威胁小行星实施多目标飞越探测任务的轨道进行优化设计,分析潜在威胁小行星穿越黄道面时刻与位置分布,以小行星穿越黄道面时刻作为探测器飞越小行星的时刻,通过波束选择树搜索算法优化求解序贯飞越序列,建立了一种快速有效求解小行星序贯飞越任务轨道的优化方法模型。仿真结果表明,2024-2028年发射的小行星探测器可在黄道面内飞越探测至少18颗潜在威胁小行星,2027年9月发射窗口在10 a任务周期内可飞越21颗潜在威胁小行星。
    Highlights
    ● The trajectory of multi-target asteroid flyby mission is solved fast and effectively by using the basic strategy of ecliptic in-plane flyover and beam search algorithm. ● Simulation results show that the mission is not sensitive to the launch window and the mission launch window from 2024 to 2028 can flyby at least 18 potentially hazardous asteroids. ● Combined with the constraints of launch vehicle and fuel to mass ratio of satellite,this method can quickly determine the number of sequential flyby asteroids in a single mission.
  • 图  1  潜在威胁小行星轨道半长轴、倾角分布

    Fig.  1  Distribution of semi-major axis and inclination angle of potentially hazardous asteroids orbit

    图  2  潜在威胁小行星穿越黄道面位置分布

    Fig.  2  Location distribution of potentially hazardous asteroids crossing the ecliptic plane

    图  3  黄道面内多目标小行星飞越算法

    Fig.  3  Multi-target asteroid flyby algorithm in ecliptic plane

    图  4  波束选择树搜索算法流程图

    Fig.  4  Flowchart of beam selection tree search algorithm

    图  5  探测器轨迹与飞越探访小行星

    Fig.  5  Trajectories of spacecraft and visited asteroids

    图  6  探测器剩余质量与飞越总数关系图

    Fig.  6  Relationship between spacecraft residual mass and total number of flybys

    表  1  节点拓展策略

    Table  1  Node expansion strategy

    策略名策略定义
    燃料最省
    策略
    $ {r}_{1}=\text{max}\text{(}{r}_{v1},{r}_{v2},\text{......}\text{,}{r}_{vN}\text{)} $
    时间最省
    策略
    $ {r}_{2}=\text{max}\text{(}{r}_{t1},{r}_{t2},\text{......}{,r}_{tN}\text{)} $
    燃料、时间平均策略$ {r}_{3}=\text{max}{(r}_{\text{ave}1},{r}_{\text{ave}2},\text{......}{,r}_{\text{ave}N}),{r}_{\text{ave}}=\frac{1}{2}\left({r}_{v}+{r}_{t}\right) $
    燃料、时间加权策略$ {r}_{4}=\text{max}\text{(}{r}_{w1},{r}_{w2},\text{.....}.,{r}_{wN}),{r}_{w}=\frac{{r}_{v}{r}_{t}}{{r}_{v}+{r}_{t}} $
    燃料、时间最大最小策略$ {r}_{5}=\mathrm{max}\{{r}_{m1},{r}_{m2},\dots \dots ,{r}_{mN}\},{r}_{m}=\mathrm{min}({r}_{v},{r}_{t}) $
    下载: 导出CSV

    表  2  不同树节点拓展规则结果

    Table  2  Results of different tree node expansion rules

    策略
    名称
    飞越个数目标函数平均值最优序列任务终止时间[Day、Month、Year]最优序列剩余速度增量[km/s]
    $ {r}_{1} $1919.017728th Dec 20340.1782
    $ {r}_{2} $1515.018722nd Aug 20310.1825
    $ {r}_{3} $1919.010514th Apr 20340.0864
    $ {r}_{4} $1919.013514th Apr 20340.0864
    $ {r}_{5} $1919.012228th Dec 20340.1782
    下载: 导出CSV

    表  3  不同波束宽度结果

    Table  3  Results of different beam widths

    bw飞越个数目标函数平均值最优序列任务终止时间[Day、Month、Year]最优序列剩余速度增量/(km∙s−1
    101717.038 623rd Feb 20340.286 3
    501818.027 506th Nov 20340.323 3
    2001919.006 525th Aug 20340.040 7
    5001919.010 814th Apr 20340.086 4
    1 0001919.010 814th Apr 20340.086 4
    2 0001919.013 528th Dec 20340.178 2
    5 0001919.012 528th Dec 20340.178 2
    10 0001919.012 528th Dec 20340.178 2
    下载: 导出CSV

    表  4  不同发射时间结果

    Table  4  Results of different launch times

    发射时间
    [Day、
    Month、Year]
    飞越
    个数
    目标
    函数q
    平均值
    最优序列任务
    终止时间[Day、
    Month、Year]
    最优序列剩余
    速度增量/
    (km∙s−1
    01stJan20241919.023 325th Nov 20330.101 5
    30thJun 20241919.040 002nd May 20340.316 4
    01stJan 20251919.012 228th Dec 20340.178 2
    30thJun 20251818.025 624th May 20350.246 1
    01stJan 20261919.009 111th Aug 20350.031 9
    30thJun 20261818.013 715th May 20360.105 3
    01stJan 20272121.006 111th Dec 20360.021 3
    30thJun 20272020.016 125th Jun 20370.197 7
    01stJan 20282020.015 219th Dec 20370.053 3
    30thJun 20282020.024 214th May 20380.084 7
    下载: 导出CSV

    表  5  多小行星飞越序列表

    Table  5  Multiple asteroids’ flyby sequence

    小行星编号飞越时刻[Day、Month、Year]速度增量/
    (km∙s−1
    小行星直径/m轨道最小交会距离MOID/AU
    2001 SG286
    2006 SU49
    2015 UR51
    2019 TN
    2015 TV144
    2017 HT2
    2003 RB5
    2012 UU136
    2004 RQ10
    Zephyr
    2014 VL6
    2006 HV5
    2020 FR3
    2011 LT17
    2001 TC45
    2017 NM6
    2017 SL17
    2004 AS1
    2006 CY10
    2012 KU12
    2010 DA
    18th May 2028
    24th Jan 2029
    08th Nov 2029
    09th Apr 2030
    08th Jan 2031
    01st Aug 2031
    19th Sept 2031
    05th May 2032
    05th Sept 2032
    20th Sept 2032
    15th Nov 2032
    14th May 2033
    08th Oct 2033
    08th Jul 2034
    29th Nov 2034
    12th Aug 2035
    28th Nov 2035
    31st Mar 2036
    09th Jun 2036
    28th Jan 2037
    27th May 2037
    0.136 5
    0.224 4
    0.075 8 0.194 6 0.102 4 0.056 6 0.188 5 0.207 6 0.302 3 0.380 5 0.096 5 0.121 0 0.146 2 0.052 6 0.020 3 0.081 0 0.173 5 0.138 2 0.340 4 0.143 2 0.123 6
    230
    400
    300
    140
    400
    800
    220
    200
    240
    2060
    210
    300
    260
    170
    500
    600
    150
    290
    300
    170
    300
    0.004 68
    0.000 02
    0.026 64
    0.009 37
    0.017 68
    0.009 95
    0.024 16
    0.034 70
    0.034 01
    0.021 70
    0.018 18
    0.015 00
    0.011 57
    0.002 03
    0.025 21
    0.007 92
    0.049 27
    0.022 72
    0.009 78
    0.040 64
    0.005 54
    下载: 导出CSV

    表  6  本文方法与迭代扩大搜索区域算法对比

    Table  6  Comparison between beam tree search and iterative extended region search algorithm

    方法名称飞越个数最优序列总速度增量/(km∙s−1最优序列任务终止时间[Day、Month、Year]
    本文方法255.1212th Dec 2028
    迭代扩大搜索区域算法215.3014th May 2029[2]
    下载: 导出CSV

    表  7  本文方法与贪婪算法、蚁群算法对比

    Table  7  Comparison table of beam tree search with greedy algorithm and ant colony algorithm

    方法名称最优飞越个数最优序列总速度
    增量/(km∙s−1
    最优序列任务终止时间[Day、Month、Year]
    贪婪-燃料最优143.418 706th Jun 2035
    蚁群算法213.511 227th May 2037
    本文方法213.305 527th May 2037
    下载: 导出CSV
  • [1] SCHULTE P,ALEGRET L,ARENILLAS I,et al. The chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary[J]. Science,2010,327(5970):1214-1218. doi:  10.1126/science.1177265
    [2] 龚自正,李明,陈川,等. 小行星监测预警、安全防御和资源利用的前沿科学问题及关键技术[J]. 科学通报,2020,65(5):346-372. doi:  10.1360/TB-2019-0425

    GONG Z Z,LI M,CHENG C,et al. The frontier science and key technologies of asteroid monitoring and early warning,security defense and resource utilization[J]. Chinese Science Bulletin,2020,65(5):346-372. doi:  10.1360/TB-2019-0425
    [3] 廖慧兮,王彤,贾晓宇. 小行星探测进展及技术特点分析[J]. 国际太空,2017(07):2-9. doi:  10.3969/j.issn.1009-2366.2017.07.001
    [4] VETRISANO M,VASILE M. Autonomous navigation of a spacecraft formation in the proximity of an asteroid[J]. Advance in Space Research,2016,57(8):1783-1804. doi:  10.1016/j.asr.2015.07.024
    [5] WALKER L,CARLO D M,GRECO C,et al. A mission concept for the low-cost large-scale exploration and characterisation of near earth objects[J]. Advances in Space Research,2020,67(11):3880-3908.
    [6] SMPAG. SMPAG statement of support for small-class, high-velocity flyby missions to small bodies for planetary defence[EB/OL]. (2021-03-25. )https: //www.cosmos.esa.int/web/smpag/meeting-16-mar-2021-.
    [7] WATANABE S I,TSUDA Y,YOSHIKAWA M,et al. Hayabusa2 Mission Overview[J]. Space Science Reviews,2017,208(1-4):3-16. doi:  10.1007/s11214-017-0377-1
    [8] RUSSELL T C,CAPACCIONI F,CORADINI A,et al. Dawn mission to Vesta and Ceres[J]. Earth,Moon,and Planets,2007,101(1-2):65-91.
    [9] MARCHI S,OLKIN C B. Lucy in the sky with Trojan asteroids[J]. Nature Astronomy,2021,5(11):1178-1178. doi:  10.1038/s41550-021-01534-6
    [10] SARLI B V,HORIKAWA M,YAM C H,et al. DESTINY+ trajectory design to(3200)Phaethon[J]. The Journal of the Astronautical Sciences,2018,65(1):82-110. doi:  10.1007/s40295-017-0117-5
    [11] GATER W. Comet mission given green light by European Space Agency[J]. Physics World,2019,32(8):13. doi:  10.1088/2058-7058/32/8/22
    [12] GAO Y,LU X,PENG Y,et al. Trajectory optimization of multiple asteroids exploration with asteroid 2010TK7 as main target[J]. Advances in Space Research,2019,63(1):432-442. doi:  10.1016/j.asr.2018.08.047
    [13] 夏炎,罗永杰,赵海斌,等. 主带小行星深空探测可接近性与多目标探测轨道的实现[J]. 天文学报,2010,51(2):163-172.

    XIA Y,LUO Y J,ZHAO H B,et al. Accessibility for main belt asteroid exploration and trajectory design for multiple asteroids[J]. Acta Astronomica Sinica,2010,51(2):163-172.
    [14] QIAO D,CUI P Y,CUI H H. Proposal for a multiple-asteroid-flyby mission with sample return[J]. Advances in space research,2012,50(3):327-333. doi:  10.1016/j.asr.2012.04.014
    [15] MCNUTT L, JOHNSON L, CLARDY D, et al. Near-earth asteroid(NEA)scout[C]//AIAA Space 2014 Conference and Exposition. San Diego, CA: AIAA, 2014.
    [16] GRECO C, DI CARLO M, WALKER L, et al. Analysis of NEOs reachability with nano-satallites and low-thrust propulsion[C]//4S Symposium 2018-Small Satellites Systems and Services. [S. l. ]: AIAA, 2018.
    [17] CATALDI G,MARCUCCIO S. A 2-D Trajectory design algorithm for multiple asteroid flyby missions[J]. Aerotecnica Missili & Spazio,2020,99(4):287-295.
    [18] LI S,HUANG X Y,YANG B. Review of optimization methodologies in global and China trajectory optimization competitions[J]. Progress in Aerospace Sciences,2018,102:60-75. doi:  10.1016/j.paerosci.2018.07.004
    [19] SHIRAZI A,CEBERIO J,LOZANO J A. Spacecraft trajectory optimization:A review of models,objectives,approaches and solutions[J]. Progress in Aerospace Sciences,2018,102:76-98. doi:  10.1016/j.paerosci.2018.07.007
    [20] JIANG F,CHEN Y,LIU Y,et al. GTOC5:results from the Tsinghua University[J]. Acta Futura,2014,8(1):37-44.
    [21] IZZO D, HENNES D, SIMÕES L F, et al. Designing complex interplanetary trajectories for the global trajectory optimization competitions[M]. Switzerland: Springer, Cham, 2016.
    [22] SHIRAZI A,CEBERIO J,LOZANO J A. Spacecraft trajectory optimization:a review of models,objectives,approaches and solutions[J]. Progress in Aerospace Sciences,2018,102:76-98. doi:  10.1016/j.paerosci.2018.07.007
    [23] LUO Y, ZHU Y, ZHU H, et al, GTOC9: results from the national university of defense technology[J]. Acta Futura, 2018(11): 37-47.
    [24] CASALINO L,PASTRONE D,SIMEONI F,et al. GTOC5:results from the Politecnico di Torino and Università di Roma Sapienza[J]. Acta Futura,2014,8(1):29-36.
    [25] PETROPOULOS A E,BONFIGLIO E P,GREBOW D J,et al. GTOC5:results from the Jet Propulsion Laboratory[J]. Acta Futura,2014,8(1):21-27.
    [26] HD· 柯蒂斯 (美), 周建华, 徐波, 冯全胜译. 轨道力学[M]. 北京: 科学出版社, 2009.
    [27] LI H Y,BAOYIN H X. Sequence optimization for multiple asteroids rendezvous via cluster analysis and probability-based beam search[J]. Science China Technological Sciences,2021,64(1):122-130. doi:  10.1007/s11431-020-1560-9
    [28] ESA. Near-earth objects coordination centre. [2021-11-20].https: //neo.ssa.esa.int/search-for-asteroids.
    [29] LIU J,ZHENG J,LI M. Dry mass optimization for the impulsive transfer trajectory of a near-Earth asteroid sample return mission[J]. Astrophysics and Space Science,2019,364(12):1-14.
    [30] SHEN H X,ZHANG T J,HUANG A Y,et al. GTOC9:Results from the Xi’an Satellite Control Center(team XSCC)[J]. Acta Futura,2018,11:49-55.
  • [1] 王颖, 唐明亮, 郝钏钏, 朱亮聪, 冯继航.  一种适应多目标轨道的运载火箭弹道制导设计方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20200038
    [2] 孙海彬, 孙胜利.  近地小行星观测技术分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20180314001
    [3] 丹尼尔T.布瑞特.  小行星与陨石的光谱联系 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.05.004
    [4] 张荣桥, 黄江川, 赫荣伟, 耿言, 孟林智.  小行星探测发展综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.05.002
    [5] 丹尼尔J.谢尔斯.  小行星远距离抵近轨道 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.05.005
    [6] 李春来, 刘建军, 严韦, 封剑青, 任鑫, 刘斌.  小行星探测科学目标进展与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.05.003
    [7] 刘雪奇, 孙海彬, 孙胜利.  近地小行星防御策略分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.06.009
    [8] 张韵, 刘岩, 李俊峰.  小行星防御动能撞击效果评估 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.01.008
    [9] 姜宇, 程彬, 宝音贺西, 李恒年.  潜在威胁小行星碰撞防御的计算与分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.014
    [10] 徐青, 王栋, 邢帅, 蓝朝桢.  小行星形貌测绘与表征技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.007
    [11] 何胜茂, 彭超, 高扬.  从日地系统L2出发借力月球飞越近地小行星 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.003
    [12] 马鹏斌, 宝音贺西.  近地小行星威胁与防御研究现状 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.002
    [13] 王栋, 徐青, 邢帅, 刘衷瑞.  小行星形貌特征的分析与描述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.04.010
    [14] 曾祥远, 龚胜平, 李俊峰, 蒋方华, 宝音贺西.  应用太阳帆悬停探测哑铃形小行星 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.007
    [15] 张泽旭, 郑博, 周浩, 崔祜涛.  载人小行星探测任务总体方案研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.03.007
    [16] 高朝辉, 童科伟, 时剑波, 申麟.  载人火星和小行星探测任务初步分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.002
    [17] 王茜茜, 谢慕君, 李元春.  基于模糊参数优化的小行星软着陆控制方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.02.010
    [18] 王峰, 杨波, 胡存明, 吴昊, 费晓星.  小行星探测用双谱段相机设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.02.012
    [19] 倪彦硕, 宝音贺西, 李俊峰.  考虑太阳摄动的小行星附近轨道动力学 . 深空探测学报(中英文),
    [20] 尚海滨, 崔平远, 熊旭, 武小宇.  载人小行星探测目标选择与轨道优化设计 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-02-12

黄道面内多目标小行星飞越探测任务轨道优化设计

doi: 10.15982/j.issn.2096-9287.2022.20210143
    基金项目:  空间碎片和小行星专项资助项目(kjsp2020020101)
    作者简介:

    郝志鑫(1996– ),男,硕士,主要研究方向:复杂空间任务序列规划与轨道优化设计。通讯地址:中国科学院国家空间科学中心(101499)E-mail:haozhixin19@mails.ucas.ac.cn

    郑建华(1966– ),女,研究员,主要研究方向:卫星自主导航、小卫星编队飞行动力学与控制技术、深空探测器节能轨道设计技术等。通讯地址:中国科学院国家空间科学中心(101499)E-mail:zhengjianhua@nssc.ac.cn

    李明涛(1982– ),男,研究员,主要研究方向:航天动力学与控制、行星防御与利用。通讯地址:中国科学院国家空间科学中心(101499)E-mail:limingtao@nssc.ac.cn

  • ● The trajectory of multi-target asteroid flyby mission is solved fast and effectively by using the basic strategy of ecliptic in-plane flyover and beam search algorithm. ● Simulation results show that the mission is not sensitive to the launch window and the mission launch window from 2024 to 2028 can flyby at least 18 potentially hazardous asteroids. ● Combined with the constraints of launch vehicle and fuel to mass ratio of satellite,this method can quickly determine the number of sequential flyby asteroids in a single mission.
  • 中图分类号: V529.2

摘要: 近距离飞越小行星可获取小行星的表面图像、测量小行星的光谱、反演小行星物理化学性质。对潜在威胁小行星实施多目标飞越探测任务的轨道进行优化设计,分析潜在威胁小行星穿越黄道面时刻与位置分布,以小行星穿越黄道面时刻作为探测器飞越小行星的时刻,通过波束选择树搜索算法优化求解序贯飞越序列,建立了一种快速有效求解小行星序贯飞越任务轨道的优化方法模型。仿真结果表明,2024-2028年发射的小行星探测器可在黄道面内飞越探测至少18颗潜在威胁小行星,2027年9月发射窗口在10 a任务周期内可飞越21颗潜在威胁小行星。

注释:
1)  ● The trajectory of multi-target asteroid flyby mission is solved fast and effectively by using the basic strategy of ecliptic in-plane flyover and beam search algorithm. ● Simulation results show that the mission is not sensitive to the launch window and the mission launch window from 2024 to 2028 can flyby at least 18 potentially hazardous asteroids. ● Combined with the constraints of launch vehicle and fuel to mass ratio of satellite,this method can quickly determine the number of sequential flyby asteroids in a single mission.

English Abstract

郝志鑫, 郑建华, 李明涛. 黄道面内多目标小行星飞越探测任务轨道优化设计[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210143
引用本文: 郝志鑫, 郑建华, 李明涛. 黄道面内多目标小行星飞越探测任务轨道优化设计[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210143
HAO Zhixin, ZHENG Jianhua, LI Mingtao. Trajectory Optimization Design for Multiple-Target Asteroid Flyby Mission in Ecliptic Plane[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210143
Citation: HAO Zhixin, ZHENG Jianhua, LI Mingtao. Trajectory Optimization Design for Multiple-Target Asteroid Flyby Mission in Ecliptic Plane[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210143
参考文献 (30)

返回顶部

目录

    /

    返回文章
    返回