中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可移动月球着陆器系统设计与实验验证

贾山 周向华 陈金宝 王永滨 赵建华 张胜

贾山, 周向华, 陈金宝, 王永滨, 赵建华, 张胜. 可移动月球着陆器系统设计与实验验证[J]. 深空探测学报(中英文), 2022, 9(1): 29-41. doi: 10.15982/j.issn.2096-9287.2022.20210141
引用本文: 贾山, 周向华, 陈金宝, 王永滨, 赵建华, 张胜. 可移动月球着陆器系统设计与实验验证[J]. 深空探测学报(中英文), 2022, 9(1): 29-41. doi: 10.15982/j.issn.2096-9287.2022.20210141
JIA Shan, ZHOU Xianghua, CHEN Jinbao, WANG Yongbin, ZHAO Jianhua, ZHANG Sheng. System Design and Experimental Verification of Mobile Lunar Lander[J]. Journal of Deep Space Exploration, 2022, 9(1): 29-41. doi: 10.15982/j.issn.2096-9287.2022.20210141
Citation: JIA Shan, ZHOU Xianghua, CHEN Jinbao, WANG Yongbin, ZHAO Jianhua, ZHANG Sheng. System Design and Experimental Verification of Mobile Lunar Lander[J]. Journal of Deep Space Exploration, 2022, 9(1): 29-41. doi: 10.15982/j.issn.2096-9287.2022.20210141

可移动月球着陆器系统设计与实验验证

doi: 10.15982/j.issn.2096-9287.2022.20210141
基金项目: 十三五民用航天项目(D030103);国家自然科学基金面上项目(52075242)
详细信息
    作者简介:

    贾山(1983– ),男,博士,副教授,主要研究方向:深空星表探测机构技术,航天进入减速与着陆技术。通讯地址:江苏省南京市江宁区南京航空航天大学将军路校区D11号楼(211106)E-mail:jiashanazz@nuaa.edu.cn

    周向华(1997– ),男,博士生,主要研究方向:星表可移动探测机构的步态规划与运动控制。通讯地址:江苏省南京市江宁区南京航空航天大学将军路校区D11号楼(211106)E-mail:xhzhou@nuaa.edu.cn

  • ● An overall scheme of buffering/walking integrated lander with variable configuration was proposed. ● The energy absorbing/driving integrated buffer was designed and equipped with weak-medium-strong three-stage aluminum honeycomb energy absorbing structure. ● The gait planning, simulation and prototype experiment of series parallel hybrid buffering/walking integrated legged mechanism were completed.

System Design and Experimental Verification of Mobile Lunar Lander

  • 摘要: 针对无法主动调姿和灵活漫游的传统星表着陆器不适用于未来大范围星表探测和星表基地建设等任务的问题,提出了一种可移动月球着陆器。首先,介绍了可移动月球着陆器的系统组成以及各子系统的组成;其次,介绍了可变构型式本体和缓冲/驱动集成式缓冲器的功能及实现;然后,建立了缓冲/行走一体化腿足机构的运动学模型,设计了减少调姿次数的直线行走和转弯等步态,规划了足端迈步与整器调姿等工况下的腿足机构各关节运动轨迹,并通过建立整器虚拟样机模型完成了步态仿真;最后,研制了行走试验样机并搭建了试验辅助设施,完成了行走步态试验。结果表明:所提出的可移动着陆器系统设计合理,步态规划有效,各主动驱动关节的运动轨迹平滑柔顺,移动过程中着陆器本体无较大起伏和偏移,行走速度可达0.01 m/s,转弯速度可达0.6 °/s。
    Highlights
    ● An overall scheme of buffering/walking integrated lander with variable configuration was proposed. ● The energy absorbing/driving integrated buffer was designed and equipped with weak-medium-strong three-stage aluminum honeycomb energy absorbing structure. ● The gait planning, simulation and prototype experiment of series parallel hybrid buffering/walking integrated legged mechanism were completed.
  • 图  1  可移动月球着陆器系统设计架构

    Fig.  1  System design architecture of mobile lunar lander

    图  2  可移动月球着陆器

    Fig.  2  Mobile lunar lander

    图  3  可移动月球着陆器收拢与展开状态

    Fig.  3  Collapsed state and expanded state of mobile lunar lander

    图  4  吸能/驱动集成式缓冲器

    Fig.  4  Energy-absorbing/Driving integrated buffer

    图  5  串联式三级铝蜂窝反向加速度曲线[30]

    Fig.  5  Reverse acceleration curve of serial three-stage aluminium honeycomb[30]

    图  6  着陆器坐标系示意图

    Fig.  6  Coordinates of lander

    图  7  封闭三角形几何映射关系

    Fig.  7  Closed triangle geometric mapping relationship

    图  8  6种静步态迈步顺序

    Fig.  8  Step sequence of 6 kinds of static gait

    图  9  静步态序列图

    Fig.  9  Static gait sequence

    图  10  四足直行步态示意图

    Fig.  10  Walking gait

    图  11  四足转弯步态示意图

    Fig.  11  Turning gait

    图  12  足端轨迹规划示意图

    Fig.  12  Trajectory planning of foot-end

    图  13  行走步态驱动位移时间曲线

    Fig.  13  Driver’s displacement-time curve of walking gait

    图  14  四足直行仿真示意图

    Fig.  14  Simulation of walking gait

    图  15  四足转弯仿真示意图

    Fig.  15  Simulation of turning gait

    图  16  本体质心位移曲线图

    Fig.  16  Displacement-time curve of centre of mass

    图  17  本体姿态曲线图

    Fig.  17  Posture angle of body

    图  18  单个步态周期内整器功耗

    Fig.  18  Power consumption of the whole device in single gait period

    图  19  可移动月球着陆器样机

    Fig.  19  Prototype of mobile lunar lander

    图  20  可移动月球着陆器控制系统

    Fig.  20  Control system of mobile lunar lander

    图  21  样机地面试验系统

    Fig.  21  Ground test system of prototype

    图  22  样机地面行走实验

    Fig.  22  Ground walking test of prototype

    表  1  子系统任务和主要功能

    Table  1  Tasks and major functions of the subsystem

    子系统任务主要功能
    本体主承力结构子系统支持腿足子系统和科学载荷的承力与安装提供本体构型,为腿足子系统、科学载荷承受和传递载荷,保持刚度和尺寸稳定性
    构型转换子系统①着陆器缓冲姿态与行走姿态切换
    ②着陆腿收拢状态与展开状态切换
    ①着陆器实现星表软着陆后,将着陆器姿态切换为行走状态
    ②着陆器发射时实现腿足收拢,着陆时实现腿足展开
    吸能/驱动集成式腿足子系统①星表软着陆支持
    ②星表移动支持
    ①吸收着陆过程中产生的冲击载荷
    ②作为驱动机构实现着陆器星表移动
    运动控制子系统①着陆腿运动量解算
    ②着陆腿运动精确控制
    ①根据步态规划算法求解腿足运动量

    ②实现着陆器稳定行走的闭环控制
    下载: 导出CSV

    表  2  单腿机构连杆参数表

    Table  2  Link parameters of single leg

    连杆i转角θi
    /(°)
    偏移di
    /mm
    杆长ai-1
    /mm
    扭角αi-1
    /(°)
    1θ1000
    2θ2L10−π/2
    3θ300π/2
    400L20
    下载: 导出CSV

    表  3  着陆器各部分质量参数

    Table  3  Mass parameters of the lander

    部分质量/kg
    本体681.34
    推杆7.15
    腿杆25.64
    足垫1.93
    主缓冲器24.33
    辅助缓冲器29.06
    下载: 导出CSV

    表  4  直流电机性能参数表

    Table  4  Performance parameters of DC-motor

    产品型号额定

    压/V
    额定

    流/A
    额定

    速/rpm
    额定
    扭矩/
    (mN·m)
    质量/
    kg
    Maxon-EC 60无刷
    直流电机
    485.92 6805432.4
    下载: 导出CSV

    表  5  减速器性能参数表

    Table  5  Performance parameters of reducer

    产品型号减速比级数最大连续输出
    功率/W
    最大瞬时输
    出功率/W
    质量/
    kg
    Maxon GP 81行星
    齿轮减速器
    51:137401 1003.7
    下载: 导出CSV
  • [1] 陈金宝,聂宏,陈传志,等. 载人登月舱设计及若干关键技术研究[J]. 宇航学报,2014,35(2):125-136. doi:  10.3873/j.issn.1000-1328.2014.02.001

    CHEN J B,NIE H,CHEN C Z,et al. Design and key techniques for lunar lander system of manned lunar landing[J]. Journal of Astronautics,2014,35(2):125-136. doi:  10.3873/j.issn.1000-1328.2014.02.001
    [2] 叶培建, 于登云, 孙泽洲, 等. 中国月球探测器的成就与展望[J]. 深空探测学报(中英文). 2016, 3(4): 307-314.

    YE P J, YU D Y, SUN Z Z, et al. Achievements and prospect of Chinese lunar probes[J]. Journal of Deep Space Exploration, 2016, 3(4): 323-333.
    [3] 于登云, 吴学英, 吴伟仁. 我国探月工程技术发展综述[J]. 深空探测学报(中英文), 2016, 3(4): 307-314.

    YU D Y, WU X Y, WU W R. Review of technology development for Chinese lunar exploration program[J]. Journal of Deep Space Exploration, 2016, 3(4): 307-314.
    [4] 徐西宝,白成超,陈宇燊,等. 月/火探测软着陆制导技术发展综述[J]. 宇航学报,2020,41(6):719-729.

    XU X B,BAI C C,CHEN Y S,et al. A survey of guidance technology for Moon/Mars soft landing[J]. Journal of Astronautics,2020,41(6):719-729.
    [5] WILCOX B H. ATHLETE: A mobility and manipulation system for the moon[C]//IEEE Aerospace Conference. Piscataway, USA: IEEE, 2007. DOI:  10.1109/AERO.2007.352726.
    [6] BENTON M G. Conceptual design of crew exploration lander for asteroid ceres and Saturn moons rhea and Iapetus[C]//The 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, USA: AIAA, 2010.
    [7] BIRCKENSTAEDT B, HOPKINS J, KUTTER B, et al. Lunar lander configurations incorporating accessibility, mobility, and centaur cryogenic propulsion experience[C]//Space. Reston, USA: AIAA. 2006: 842-853.
    [8] 张志贤,梁鲁,果琳丽,等. 轮腿式可移动载人月面着陆器概念设想[J]. 载人航天,2016,22(2):202-209. doi:  10.3969/j.issn.1674-5825.2016.02.010

    ZHANG Z X,LIANG L,GUO L L,et al. Conceptual design of manned lunar lander with wheel-legged mobile system[J]. Manned Spaceflight,2016,22(2):202-209. doi:  10.3969/j.issn.1674-5825.2016.02.010
    [9] HAN Y C, GUO W Z. Novel design of the actuation-transmission system for legged mobile lander considering large impact[J]. Advances in Mechanism and Machine Science, 2019, 73: 1859-1868.
    [10] HAN Y C,GUO W Z,PENG Z K,et al. Dimensional synthesis of the reconfigurable legged mobile lander with multi-mode and complex mechanism topology[J]. Mechanism and Machine Theory,2020,155:104097.
    [11] 佟振鸣. 移动式着陆探测机器人构型设计与行走规划研究[D]. 上海: 上海交通大学, 2016.

    TONG Z M. On configuration design and gait planning of mobile exploration lander[D]. Shanghai: Shanghai Jiao Tong University, 2006.
    [12] 秦日鹏,徐坤,陈佳伟,等. 一种星球探测六足轮腿机器人的设计与运动规划[J]. 航空学报,2021,42(1):524244.

    QIN R P,XU K,CHEN J W,et al. Design and motion planning of wheel-legged hexapod robot for planetary exploration[J]. Acta Aeronautica et Astronautica Sinica,2021,42(1):524244.
    [13] GONCALVES R,CARVALHO J. Review and latest trends in mobile robots used on power transmission lines[J]. International Journal of Advanced Robotic Systems,2013,10(1):1-14. doi:  10.5772/52938
    [14] 张元勋,黄靖,韩亮亮. 星表移动探测机器人研究现状综述[J]. 航空学报,2021,42(1):523909.

    ZHANG Y X,HUANG J,HAN L L. Research status of planetary surface mobile exploration robots:review[J]. Acta Aeronautica et Astronautica Sinica,2021,42(1):523909.
    [15] CHEN Z H,WANG S K,WANG J Z,et al. Control strategy of stable walking for a hexapod wheel-legged robot[J]. ISA Transactions,2020,108:367-380.
    [16] BISWAL P,MOHANTY P K. Development of quadruped walking robots:a review[J]. Ain Shams Engineering Journal,2020,12(2):1-15.
    [17] 陈志华,汪首坤,王军政,等. 电动并联六轮足机器人的运动驱动与多模态控制方法[J]. 机器人,2020,42(5):534-549.

    CHEN Z H,WANG S K,WANG J Z,et al. Motion drive and multi-mode control method of an electric parallel six wheel-legged robot[J]. Robot,2020,42(5):534-549.
    [18] 叶鹏达,尤晶晶,仇鑫,等. 并联机器人运动性能的研究现状及发展趋势[J]. 南京航空航天大学学报,2020,255(3):27-41.

    YE P D,YOU J J,QIU X,et al. Status and development trend of motion performance in parallel robot[J]. Journal of Nanjing University of Aeronautics & Astronautics,2020,255(3):27-41.
    [19] 郝仁剑,王军政,史大威,等. 基于速度矢量的四足机器人间歇步态规划方法[J]. 机器人,2016,38(5):540-549.

    HAO R J,WANG J Z,SHI D W,et al. Intermittent gait planning method of quadruped robot based on velocity vector[J]. Robot,2016,38(5):540-549.
    [20] 李力. 具有强越障能力的六足轮腿式爬行机器人[D]. 南京: 南京航空航天大学, 2019.

    LI L. A novel wheel-legged hexapod robot with strong obstacle-crossing ability[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [21] KOO I M,TRAN D T,LEE Y H,et al. Development of a quadruped walking robot AiDIN-III using biologically inspired kinematic analysis[J]. International Journal of Control,Automation & Systems,2013,11(6):1276-1289.
    [22] 常青,韩宝玲,乔志霞,等. 四足机器人斜坡运动的自适应控制算法[J]. 北京理工大学学报,2019,39(9):900-906.

    CHANG Q,HAN B L,QIAO Z X,et al. An adaptive control algorithm for quadruped robot trotting on a slope[J]. Transactions of Beijing Institute of Technology,2019,39(9):900-906.
    [23] FUKUOKA Y,KIMURA H. Dynamic locomotion of a biomorphic quadruped ‘Tekken’ robot using various gaits:walk,trot,free-gait and bound[J]. Applied Bionics & Biomechanics,2014,6(1):63-71.
    [24] 张文佳, 尚伟伟. 2自由度绳索牵引并联机器人的高速点到点轨迹规划方法[J]. 机械工程学报, 2016, 52(3): 1-8.

    ZHANG W J, SHANG W W. Hign-speed point-to-point trajectory planning of a 2-DOF cable driven parallel manipulator[J]. Journal of Mechanical Engineering, 2016, 52(3): 1-8.
    [25] 马宇豪,梁雁冰. 一种基于六次多项式轨迹规划的机械臂避障算法[J]. 西北工业大学学报,2020,38(2):392-400. doi:  10.3969/j.issn.1000-2758.2020.02.021

    MA Y H,LIANG Y B. An obstacle avoidance algorithm for manipulators based on six-order polynomial trajectory planning[J]. Journal of Northwestern Polytechnical University,2020,38(2):392-400. doi:  10.3969/j.issn.1000-2758.2020.02.021
    [26] LI Y H,HUANG T,CHETWYND D G. An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines[J]. Mechanism and Machine Theory,2018,126:479-490. doi:  10.1016/j.mechmachtheory.2018.04.026
    [27] 陈栋, 李世其, 王俊峰, 等. 并联机构的运动学多目标轨迹规划方法[J]. 机械工程学报, 2019, 55(15): 163-173.

    CHEN D, LI S Q, WANG J F, et al. Method of multi-objective trajectory planning of parallel mechanism based on the kinematics[J]. Journal of Mechanical Engineering, 2019, 55(15): 163-173.
    [28] ZHONG G L,DENG H. Dynamic hybrid control of a hexapod walking robot:experimental verification[J]. IEEE Transactions on Industrial Electronics,2016,63(8):5001-5011.
    [29] 贾山,周向华,陈金宝,等. 缓冲/行走一体化着陆器运动学研究与步态规划[J]. 宇航学报,2021,42(4):10-19.

    JIA S,ZHOU X H,CHEN J B,et al. Kinematics research and gait planning of buffering/walking integrated lander[J]. Journal of Astronautics,2021,42(4):10-19.
    [30] 贾山,钱佳程,陈金宝,等. 基于多级铝蜂窝缓冲器的新型着陆器性能分析[J]. 上海航天(中英文),2021(2):87-97.

    JIA S,QIAN J C,CHEN J B,et al. Performance analysis of a new lander based on Multi-level aluminum honeycomb buffer[J]. Aerospace Shanghai(Chinese& English),2021(2):87-97.
    [31] 冷舒,吴克,居鹤华. 机械臂运动学建模及解算方法综述[J]. 宇航学报,2019,40(11):1262-1273.

    LENG S,WU K,JU H H,et al. Overview of manipulator kinematics modeling and solving method[J]. Journal of Astronautics,2019,40(11):1262-1273.
    [32] 卢文娟,郑旭,荣令魁,等. 一种基于角度传感器的6-UPS机构正向运动学分析方法[J]. 机器人,2020,42(5):550-556.

    LU W J,ZHENG X,RONG L H,et al. A Method for forward kinematics analysis of 6-UPS mechanism based on angle sensor[J]. Robot,2020,42(5):550-556.
    [33] 徐文福,张金涛,闫磊,等. 偏置式冗余空间机械臂逆运动学求解的参数化方法[J]. 宇航学报,2015,36(1):33-39. doi:  10.3873/j.issn.1000-1328.2015.01.005

    XU W F,ZHANG J T,YAN L,et al. Parameterized inverse kinematics resolution method for a redundant space manipulator with link offset[J]. Journal of Astronautics,2015,36(1):33-39. doi:  10.3873/j.issn.1000-1328.2015.01.005
    [34] CRAIG J J. Introduction to robotics: mechanics and control[J]. Pearson Education, Inc, 1986, 23(2): 116-124.
    [35] 牛厂磊,罗志福,雷英俊,等. 深空探测先进电源技术综述[J]. 深空探测学报(中英文),2020,7(1):24-34.

    NIU C L,LUO Z F,LEI Y J,et al. Advanced power source technology of deep exploration[J]. Journal of Deep Space Exploration,2020,7(1):24-34.
  • [1] 张志恒, 唐钧跃, 张伟伟, 孙凤, 李鹏, 王储, 刘子恒, 贺怀宇, 刘冉冉, 马如奇, 姜生元.  月壤微定量采样器设计与试验验证 . 深空探测学报(中英文), 2022, 9(2): 165-172. doi: 10.15982/j.issn.2096-9287.2022.20210148
    [2] 王昌, 臧立彬, 李广平, 王灏, 徐硕, 赵卫灵, 侯玮杰.  基于零刚度原理的小天体着陆缓冲试验技术研究 . 深空探测学报(中英文), 2022, 9(4): 1-8. doi: 10.15982/j.issn.2096-9287.2022.20220063
    [3] 王棒, 徐瑞, 李朝玉, 高越.  小天体表面探测器弹跳运动与路径规划 . 深空探测学报(中英文), 2022, 9(4): 447-454. doi: 10.15982/j.issn.2096-9287.2022.20220042
    [4] 罗敏, 杨建中, 韩福生, 满剑锋.  “天问一号” 着陆缓冲机构吸能材料设计分析与试验验证 . 深空探测学报(中英文), 2021, 8(5): 472-477. doi: 10.15982/j.issn.2096-9287.2021.20210044
    [5] 胡晓东, 张宽, 谢圆, 张辉, 卢皓, 刘传凯, 陈翔, 赵焕洲, 谢剑锋.  “嫦娥五号”月面采样机械臂路径规划 . 深空探测学报(中英文), 2021, 8(6): 564-571. doi: 10.15982/j.issn.2096-9287.2021.20210095
    [6] 李贺, 王禹, 杜小振, 曾庆良.  一种可跳跃的月面移动机器人系统设计 . 深空探测学报(中英文), 2020, 7(3): 304-310. doi: 10.15982/j.issn.2095-7777.2020.20191011011
    [7] 姜啸, 徐瑞, 陈俐均.  深空探测器动态约束规划中的外延约束过滤方法研究 . 深空探测学报(中英文), 2019, 6(6): 586-594. doi: 10.15982/j.issn.2095-7777.2019.06.010
    [8] 于天一, 费江涛, 李立春, 程肖.  月面巡视器路径规划方法研究 . 深空探测学报(中英文), 2019, 6(4): 384-390. doi: 10.15982/j.issn.2095-7777.2019.04.011
    [9] 金颢, 徐瑞, 崔平远, 朱圣英.  基于扩展状态深空探测器任务规划方法 . 深空探测学报(中英文), 2018, 5(6): 569-574. doi: 10.15982/j.issn.2095-7777.2018.06.010
    [10] 陈略, 平劲松, 李文潇, 韩松涛, 刘庆, 陈永强, 张建辉, 简念川.  基于中国深空站的木星探测器开环测量试验 . 深空探测学报(中英文), 2018, 5(4): 382-386. doi: 10.15982/j.issn.2095-7777.2018.04.009
    [11] 姜啸, 徐瑞, 朱圣英.  基于约束可满足的深空探测任务规划方法研究 . 深空探测学报(中英文), 2018, 5(3): 262-268. doi: 10.15982/j.issn.2095-7777.2018.6.008
    [12] 任德鹏, 李青, 刘振春, 张旭辉.  月面着陆起飞试验技术研究 . 深空探测学报(中英文), 2018, 5(3): 281-285,298. doi: 10.15982/j.issn.2095-7777.2018.6.011
    [13] 李群智, 贾阳, 彭松, 韩璐.  月面巡视探测器任务规划顶层设计与实现 . 深空探测学报(中英文), 2017, 4(1): 58-65. doi: 10.15982/j.issn.2095-7777.2017.01.009
    [14] 陈略, 平劲松, 张建辉, 刘庆, 岳世磊, 陈永强, 王际舟, 李文潇.  中国深空网成功实施“卡西尼号”探测器坠入土星测量试验 . 深空探测学报(中英文), 2017, 4(5): 491-492. doi: 10.15982/j.issn.2095-7777.2017.05.012
    [15] 胡宇鹏, 鲁亮, 向延华, 李思忠, 胡文军, 胡绍全.  深空探测器同位素热源环境试验技术 . 深空探测学报(中英文), 2017, 4(2): 138-142. doi: 10.15982/j.issn.2095-7777.2017.02.006
    [16] 王彦龙, 杨浩, 李兴达, 江豪成, 张天平.  5 kW环型离子推力器试验研究 . 深空探测学报(中英文), 2017, 4(3): 232-237. doi: 10.15982/j.issn.2095-7777.2017.03.005
    [17] 许允斗, 刘文兰, 陈亮亮, 姚建涛, 赵永生, 朱佳龙.  一种新型可展组合单元的自由度与运动学分析 . 深空探测学报(中英文), 2017, 4(4): 333-339. doi: 10.15982/j.issn.2095-7777.2017.04.004
    [18] 武长青, 徐瑞, 朱圣英.  基于对数势函数的深空探测器姿态规划与控制方法 . 深空探测学报(中英文), 2015, 2(4): 365-370. doi: 10.15982/j.issn.2095-7777.2015.04.011
    [19] 陈德相, 徐文明, 杜智远, 徐瑞.  航天器任务规划中资源约束的可分配处理方法 . 深空探测学报(中英文), 2015, 2(2): 180-185. doi: 10.15982/j.issn.2095-7777.2015.02.013
    [20] 梁常春, 孙鹏飞, 王耀兵, 危清清, 姜水清.  行星采样柔性机械臂运动规划研究 . 深空探测学报(中英文), 2015, 2(1): 27-33. doi: 10.15982/j.issn.2095-7777.2015.01.004
  • 加载中
图(22) / 表 (5)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  275
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-01-05
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-04-13

可移动月球着陆器系统设计与实验验证

doi: 10.15982/j.issn.2096-9287.2022.20210141
    基金项目:  十三五民用航天项目(D030103);国家自然科学基金面上项目(52075242)
    作者简介:

    贾山(1983– ),男,博士,副教授,主要研究方向:深空星表探测机构技术,航天进入减速与着陆技术。通讯地址:江苏省南京市江宁区南京航空航天大学将军路校区D11号楼(211106)E-mail:jiashanazz@nuaa.edu.cn

    周向华(1997– ),男,博士生,主要研究方向:星表可移动探测机构的步态规划与运动控制。通讯地址:江苏省南京市江宁区南京航空航天大学将军路校区D11号楼(211106)E-mail:xhzhou@nuaa.edu.cn

  • ● An overall scheme of buffering/walking integrated lander with variable configuration was proposed. ● The energy absorbing/driving integrated buffer was designed and equipped with weak-medium-strong three-stage aluminum honeycomb energy absorbing structure. ● The gait planning, simulation and prototype experiment of series parallel hybrid buffering/walking integrated legged mechanism were completed.

摘要: 针对无法主动调姿和灵活漫游的传统星表着陆器不适用于未来大范围星表探测和星表基地建设等任务的问题,提出了一种可移动月球着陆器。首先,介绍了可移动月球着陆器的系统组成以及各子系统的组成;其次,介绍了可变构型式本体和缓冲/驱动集成式缓冲器的功能及实现;然后,建立了缓冲/行走一体化腿足机构的运动学模型,设计了减少调姿次数的直线行走和转弯等步态,规划了足端迈步与整器调姿等工况下的腿足机构各关节运动轨迹,并通过建立整器虚拟样机模型完成了步态仿真;最后,研制了行走试验样机并搭建了试验辅助设施,完成了行走步态试验。结果表明:所提出的可移动着陆器系统设计合理,步态规划有效,各主动驱动关节的运动轨迹平滑柔顺,移动过程中着陆器本体无较大起伏和偏移,行走速度可达0.01 m/s,转弯速度可达0.6 °/s。

注释:
1)  ● An overall scheme of buffering/walking integrated lander with variable configuration was proposed. ● The energy absorbing/driving integrated buffer was designed and equipped with weak-medium-strong three-stage aluminum honeycomb energy absorbing structure. ● The gait planning, simulation and prototype experiment of series parallel hybrid buffering/walking integrated legged mechanism were completed.

English Abstract

贾山, 周向华, 陈金宝, 王永滨, 赵建华, 张胜. 可移动月球着陆器系统设计与实验验证[J]. 深空探测学报(中英文), 2022, 9(1): 29-41. doi: 10.15982/j.issn.2096-9287.2022.20210141
引用本文: 贾山, 周向华, 陈金宝, 王永滨, 赵建华, 张胜. 可移动月球着陆器系统设计与实验验证[J]. 深空探测学报(中英文), 2022, 9(1): 29-41. doi: 10.15982/j.issn.2096-9287.2022.20210141
JIA Shan, ZHOU Xianghua, CHEN Jinbao, WANG Yongbin, ZHAO Jianhua, ZHANG Sheng. System Design and Experimental Verification of Mobile Lunar Lander[J]. Journal of Deep Space Exploration, 2022, 9(1): 29-41. doi: 10.15982/j.issn.2096-9287.2022.20210141
Citation: JIA Shan, ZHOU Xianghua, CHEN Jinbao, WANG Yongbin, ZHAO Jianhua, ZHANG Sheng. System Design and Experimental Verification of Mobile Lunar Lander[J]. Journal of Deep Space Exploration, 2022, 9(1): 29-41. doi: 10.15982/j.issn.2096-9287.2022.20210141
    • 重返月球和载人火星探测并列为21世纪深空探测的两大目标,其中,着陆器在相关任务中发挥了至关重要的作用。目前,已实施和正在实施的星表探测任务中,着陆器均不具备自主运动能力,即着陆器着陆后姿态、位置均为固定[1-4]。固定式着陆的有效性已多次在探测任务中得到检验,且可通过搭载轮式巡视器扩大探测范围,但仍存在一定的局限性,例如扩展范围和巡视器功能有限等。着陆器无法调姿和移动,在综合考虑着陆过程安全性和科学目标达成性的情况下,明显限制了着陆点的选择,从而导致探测范围受限和缓冲进程无法统一。此外,无法调姿和移动的着陆器对未来星表基地建设等任务的适用性有限,需引入专用运输工具承担物资转运、人员运输、居住舱连接等工作,将会显著增加发射载荷和任务成本。因此,设计一种缓冲/行走一体化腿足式着陆器,在悬臂式构型的基础上,融合缓冲吸能和主动驱动的功能,使其能够在吸收巨大冲击载荷的同时实现灵活的星表漫游,将具有明显的工程实用价值。

      目前,国内外对可移动着陆器只进行了一些探索性的研究与设想。文献[5]提出了基于ALTHETE的轮腿式可移动着陆器,该着陆器具备六条轮腿式腿足,可实现月面快速移动和姿态调整,多个着陆器还可对接组合形成月球基地;文献[6]提出了一种轮式货运着陆器,可在星表移动并承担人员居住和增压任务;文献[7]提出了一种星表着陆器,其上升级配置轮式移动系统,可单独完成着陆并在月表移动;文献[8]提出了一种轮腿式可移动月面着陆器,采用六足构型,单腿具备3个自由度,可实现月面行进和障碍攀爬。以上研究均为设想,且均未考虑腿足机构缓冲功能的实现。文献[9-10]提出了一种腿足式可移动着陆器,并针对其软着陆和行走功能进行了多学科拓扑优化,但未对行走步态进行设计;文献[11]提出了一种用于着陆探测的四足机器人并设计了行走步态,但未考虑缓冲功能实现;文献[12]提出了一种星表探测六足轮腿组合式机器人,可切换运动模式实现腿足移动和轮式驱动。以上研究均为仿真分析,未进行样机试验。可移动着陆器虽未有成功案例,但腿足式机器人已发展了数十年,积累了较为丰富的研究成果[13-15]。相比于轮式机器人,腿足式机器人有着优秀的地形适应性和通过性;相比于多足机器人,四足机器人质量轻、体积小,发射成本低;相比于轮腿式机器人,腿足式机器人不易打滑,抗冲击能力更强;相比于串联式腿足构型,并联式构型有着负载能力强的特点[16-18]。因此,四足并联腿足构型成为兼顾移动性和稳定性的可移动着陆器的最佳构型。

      为实现可移动着陆器在非确知、非结构性星表环境下的灵活漫游,需要进行步态设计。步态设计可分为动态步态和静态步态。由于星表移动任务首先需保证安全性和稳定性,可移动着陆器的运动过程较为缓慢,惯性力的影响微弱,可采用静态Walk步态。文献[19]和文献[20]中分别采用间歇步态和爬行步态对四足机器人进行了运动轨迹规划,两种步态均属于静步态,具有较高的行走稳定性。文献[21]采用COG轨迹规划法设计了行走步态,增强了步态的稳定性;文献[22]和文献[23]分别采用离线规划法和神经网络算法规划了四足机器人的行走步态。以上步态均为动步态,具有较高的移动速度但稳定性低于静步态。因此,本文将设计典型静步态Walk步态,用于实现着陆器的行走与转弯动作。在步态设计中,需要对可移动着陆器的足端迈步轨迹进行规划,避免足端与地面产生碰撞或者在迈步开始和结束时发生冲击。文献[24]采用了轨迹组合方法来规划机器人足端的运动轨迹,使得机器人足端轨迹的起始点和终止点速度、加速度均为零值;文献[25]采用参数优化的多项式轨迹法规划了机械臂的运动轨迹;文献[26-27]采用B样条曲线对并联机器人运动轨迹进行了规划,保证了轨迹初始和最终速度为零;文[28]采用摆线法规划了机器人的三角步态,得到了稳定连续的运动轨迹。本文所提着陆器对速度要求较低,且迈步时间较长,同时,样条曲线和组合轨迹的方式占用过多计算时间,故本文采用抛物曲线进行轨迹规划,在节省计算时间的同时,还方便调节迈步参数。

      综上,本文提出了一种新型可移动着陆器,并进行了整器系统设计;介绍了可变构型式主体和吸能/驱动集成式缓冲器的功能及实现方式;建立着陆器运动学模型的基础上,进行了静步态规划和足端运动轨迹规划,并进行了虚拟样机仿真;最后,进行了实物样机实验,校验了系统设计的合理性和步态规划的有效性。

    • 本文所设计的可移动月球着陆器系统主要由本体主承力结构子系统、构型转换子系统、吸能/驱动集成式腿足子系统和运动控制子系统等部分组成。本体主承力结构子系统负责构成着陆器本体,为其余子系统和科学载荷提供支撑与安装平台;构型转换子系统用于实现可移动着陆器着陆姿态与行走姿态的切换,以及收拢状态与展开状态的切换;吸能/驱动集成式腿足子系统用于实现软着陆和星表移动;运动控制子系统负责为星表移动任务提供步态规划与腿足运动控制。区别于传统不可移动式着陆器,可移动着陆器通过构型转换子系统,将着陆器由着陆姿态(腿足呈四足均布式)转换为行走姿态(腿足呈前膝后肘式),提高了着陆器的移动效率;通过吸能/驱动集成式腿足子系统,使腿足机构在保证着陆器实现缓冲功能的同时,具备移动能力。可移动月球着陆器系统设计架构如图1所示,各子系统任务和主要功能如表1所示。

      图  1  可移动月球着陆器系统设计架构

      Figure 1.  System design architecture of mobile lunar lander

      表 1  子系统任务和主要功能

      Table 1.  Tasks and major functions of the subsystem

      子系统任务主要功能
      本体主承力结构子系统支持腿足子系统和科学载荷的承力与安装提供本体构型,为腿足子系统、科学载荷承受和传递载荷,保持刚度和尺寸稳定性
      构型转换子系统①着陆器缓冲姿态与行走姿态切换
      ②着陆腿收拢状态与展开状态切换
      ①着陆器实现星表软着陆后,将着陆器姿态切换为行走状态
      ②着陆器发射时实现腿足收拢,着陆时实现腿足展开
      吸能/驱动集成式腿足子系统①星表软着陆支持
      ②星表移动支持
      ①吸收着陆过程中产生的冲击载荷
      ②作为驱动机构实现着陆器星表移动
      运动控制子系统①着陆腿运动量解算
      ②着陆腿运动精确控制
      ①根据步态规划算法求解腿足运动量

      ②实现着陆器稳定行走的闭环控制
    • 可移动月球着陆器具备着陆缓冲和星表移动功能,由本体和4组3自由度串并混联式着陆腿组成。串并混联式着陆腿不但具有并联构型的大承载能力,同时具有串联构型的运动灵活性,能够满足可移动着陆器的缓冲与移动功能需要。每条着陆腿均包含1组主缓冲器、2组辅助缓冲器、1条推杆、1条腿杆和1个足垫,具有3个移动自由度,对应1个转动关节和1个万向节,每个关节处均装有旋转编码器。初始状态下,可移动月球着陆器处于缓冲状态,4条着陆腿均布于本体四周,完成缓冲着陆后,由构型转换机构驱动,着陆器采用三足支撑,一足转换的方式,通过调整着陆器姿态,依照“左前—右前—右后—左后”的顺序完成腿足机构由四足均布式向前膝后肘式的转换,由于构型转换的调姿规划与运动控制不是本文重点,这里不作赘述。着陆器转变为行走状态,4条着陆腿两两对称分布于本体两侧,如图2所示。辅助缓冲器与本体连接处装有收拢展开机构,可通过向上滑动实现着陆腿收拢,向下滑动实现着陆腿展开与锁定,如图3所示。

      图  2  可移动月球着陆器

      Figure 2.  Mobile lunar lander

      图  3  可移动月球着陆器收拢与展开状态

      Figure 3.  Collapsed state and expanded state of mobile lunar lander

    • 吸能/驱动集成式缓冲器用以实现缓冲和行走功能[29]。该缓冲器主要由外筒、内筒、活塞杆、缓冲吸能材料和驱动装置组成,如图4所示。缓冲器内筒和外筒之间分别放置铝蜂窝材料,可进行双向拉压缓冲吸能;驱动装置由直流伺服电机、减速器、制动器和滚珠丝杠组成,滚珠丝杠与缓冲器活塞杆相连,通过电机转动带动滚珠丝杠运动,可实现活塞杆相对于内外筒主体部分的伸缩运动,进而实现腿足机构的迈步等运动。缓冲/行走功能切换由切换装置实现,缓冲状态下,卡锁与卡槽保持分离,此时缓冲器具备双向拉压缓冲能力,可作为主/辅助缓冲器吸收着陆过程中的纵向和侧向冲击载荷;缓冲任务完成后,丝杠带动滑块运动,实现卡锁与滑块的锁止,随后活塞杆与丝杠螺母保持固定,通过滚珠丝杠转动,可实现缓冲器活塞杆的伸缩移动,从而作为主/辅助缓冲支柱的驱动机构驱动着陆腿完成规定动作。

      图  4  吸能/驱动集成式缓冲器

      Figure 4.  Energy-absorbing/Driving integrated buffer

      吸能/驱动集成式缓冲器内部选用串联式三级铝蜂窝组合结构,可降低着陆过程中的反向加速度峰值。采用H004-3003(弱)、H005-3003(中)、H005-5052(强)3种型号铝蜂窝串联,设定落震本体质量为300 kg,以模拟1/4着陆器;铝蜂窝长度为360 mm,触地速度为4m/s,用于模拟铝蜂窝溃缩力的活塞滑块与筒壁的接触动静摩擦系数均为0.3。仿真过程中,弱、中、强3种铝蜂窝依次溃缩吸能,本体反向加速度曲线如图5所示,最大过载低于5.5 g。设计与仿真过程详见文献[30]。

      图  5  串联式三级铝蜂窝反向加速度曲线[30]

      Figure 5.  Reverse acceleration curve of serial three-stage aluminium honeycomb[30]

    • 建立可移动着陆器坐标系如图6所示。在推杆与着陆器本体的4个连接点处依次建立腿足坐标系{OLF}、{OLB}、{ORF}、{ORB},在该点所在平面几何中心建立机体坐标系{OB},如图6(a)所示,腿足各部分参数定义如图6(b)所示。以腿足RF为例,建立单腿关节坐标系[31-33],以推杆与着陆器本体连接点处转动关节R3为原点建立腿足坐标系{O1},以推杆与腿杆连接处胡克铰U3为原点建立坐标系{O2}和{O3},以腿杆与足垫连接处建立坐标系{O4}。

      图  6  着陆器坐标系示意图

      Figure 6.  Coordinates of lander

      根据上述关节坐标系定义,令坐标系{O1}、{O2}和{O3}处的关节转角对应为θ1θ2θ3。推杆长度为L1,腿杆长度为L2,主缓冲支柱初始长度为C1,辅助缓冲支柱初始长度分别为C2C3。根据连杆参数关系,由改进D-H参数法建立单腿连杆参数表[33],如表2所示。

      表 2  单腿机构连杆参数表

      Table 2.  Link parameters of single leg

      连杆i转角θi
      /(°)
      偏移di
      /mm
      杆长ai-1
      /mm
      扭角αi-1
      /(°)
      1θ1000
      2θ2L10−π/2
      3θ300π/2
      400L20

      根据腿足连杆参数和连杆变换矩阵${}_i^{i - 1}{\boldsymbol{T}}$,可由D-H变换法得到各关节姿态变换矩阵,进而可得单腿正运动学,如式(1)和式(2)所示。

      $$ {}_4^0{\boldsymbol{T}} = {}_1^0{\boldsymbol{T}}{}_2^1{\boldsymbol{T}}{}_3^2{\boldsymbol{T}}{}_4^3{\boldsymbol{T}} = \left[ {\begin{array}{*{20}{c}} {{r_{11}}}&{{r_{12}}}&{{r_{13}}}&{{p_x}} \\ {{r_{21}}}&{{r_{22}}}&{{r_{23}}}&{{p_y}} \\ {{r_{31}}}&{{r_{32}}}&{{r_{33}}}&{{p_z}} \\ 0&0&0&1 \end{array}} \right] $$ (1)

      其中

      $$ \left\{ {\begin{array}{*{20}{l}} {{r_{11}} = \cos {\theta _1}\cos {\theta _2}\cos {\theta _3} - \sin {\theta _1}\sin {\theta _3}} \\ {{r_{12}} = - \cos {\theta _1}\cos {\theta _2}\sin {\theta _3} - \sin {\theta _1}\cos {\theta _3}} \\ {{r_{13}} = \cos {\theta _1}\sin {\theta _2}} \\ {{r_{21}} = \sin {\theta _1}\cos {\theta _2}\cos {\theta _3} + \cos {\theta _1}\sin {\theta _3}} \\ {{r_{22}} = - \sin {\theta _1}\cos {\theta _2}\sin {\theta _3} + \cos {\theta _1}\cos {\theta _3}} \\ {{r_{23}} = \sin {\theta _1}\sin {\theta _2}} \\ {{r_{31}} = - \sin {\theta _2}\cos {\theta _3}} \\ {{r_{32}} = \sin {\theta _2}\sin {\theta _3}} \\ {{r_{33}} = \cos {\theta _2}} \\ {{p_x} = \cos {\theta _1}\cos {\theta _2}\cos {\theta _3}{L_2} - \sin {\theta _1}\sin {\theta _3}{L_2} - \sin {\theta _1}{L_1}} \\ {{p_y} = \sin {\theta _1}\cos {\theta _2}\cos {\theta _3}{L_2} + \cos {\theta _1}\sin {\theta _3}{L_2} + \cos {\theta _1}{L_1}} \\ {{p_z} = - \sin {\theta _2}\cos {\theta _3}{L_2}} \end{array}} \right. $$ (2)

      进一步,通过分离θ1项至等式(1)的左边,可得式(3)所示方程式

      $$ {\left[ {{}_1^0{\boldsymbol{T}}(\theta_1)} \right]^{ - 1}}{}_4^0{\boldsymbol{T}} = {}_2^1{\boldsymbol{T}}(\theta_2){}_3^2{\boldsymbol{T}}(\theta_3){}_4^3{\boldsymbol{T}} $$ (3)

      由于连杆变换矩阵T的旋转矩阵正交且不含平移分量,其逆矩阵等于转置矩阵,因此将式(3)改为式(4)形式

      $$ \left[ {\begin{array}{*{20}{c}} {\cos {\theta _1}}&{\sin {\theta _1}}&0&0 \\ { - \sin {\theta _1}}&{\cos {\theta _1}}&0&0 \\ 0&0&0&0 \\ 0&0&0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{r_{11}}}&{{r_{12}}}&{{r_{13}}}&{{p_x}} \\ {{r_{21}}}&{{r_{22}}}&{{r_{23}}}&{{p_y}} \\ {{r_{31}}}&{{r_{32}}}&{{r_{33}}}&{{p_z}} \\ 0&0&0&1 \end{array}} \right] = {}_4^1{\boldsymbol{T}} $$ (4)

      令等式(4)两边对应元素(1,4)、(3,4)项分别相等可得式(5)

      $$ \left\{ {\begin{array}{*{20}{l}} {\cos {\theta _1}{p_x} + \sin {\theta _1}{p_y} = {L_2}\cos {\theta _2}\cos {\theta _3}} \\ {{p_z} = - {L_2}\sin {\theta _2}\cos {\theta _3}} \end{array}} \right. $$ (5)

      对式(5)方程组求解得到运动学逆解如式(6)所示

      $$ \left\{ {\begin{array}{*{20}{l}} {{\theta _1} = \arctan \left( {\dfrac{{{p_y}}}{{{p_x}}}} \right) - \arctan \left( {\dfrac{K}{{ \pm \sqrt {{p_x}^2 + {p_y}^2 - {K^2}} }}} \right)} \\ {{\theta _2} = \arcsin \left( {\dfrac{{ - {p_z}}}{{{L_2}\cos {\theta _3}}}} \right)} \\ {{\theta _3} = \arcsin \left( {\dfrac{{ - \sin {\theta _1}{p_x} + \cos {\theta _1}{p_y} - {L_1}}}{{{L_2}}}} \right)} \\ {K = \dfrac{{{p_x}^2 + {p_y}^2 + {p_z}^2 - {L_2}^2 - {L_1}^2}}{{2{L_1}}}} \end{array}} \right. $$ (6)

      主/辅助缓冲支柱的伸缩位移可由转动关节向驱动关节的映射得到。转动关节R1、R2、R3和主缓冲支柱P1构成封闭三角形如图7所示。由余弦定理可得,主缓冲支柱P1的伸缩位移p1与关节转角θ1的关系如式(7)

      图  7  封闭三角形几何映射关系

      Figure 7.  Closed triangle geometric mapping relationship

      $$ \left| {{{\text{R}}_{\text{1}}}{{\text{R}}_{\text{2}}}} \right| = \sqrt {{{\left| {{{\text{R}}_{\text{2}}}{{\text{R}}_{\text{3}}}} \right|}^2} + {{\left| {{{\text{R}}_{\text{1}}}{{\text{R}}_{\text{3}}}} \right|}^2} - 2\left| {{{\text{R}}_{\text{1}}}{{\text{R}}_{\text{3}}}} \right|\left| {{{\text{R}}_{\text{2}}}{{\text{R}}_{\text{3}}}} \right|\cos ({\theta _1} + \alpha )} $$ (7)

      辅助缓冲支柱的伸缩位移可由胡克铰U3处的关节转角θ2θ3映射得到。设胡克铰U1、U2在坐标系{ORF}内坐标为(xU1,yU1,zU1)、(xU2,yU2,zU2),球铰S1、S2在坐标系{O3}内坐标为(a,−b,c)、(a,−b,−c)。在坐标系{ORF}内,球铰S1、S2的位置坐标(xS1,yS1,zS1)、(xS2,yS2,zS2)可由正运动学推导得到,如式(8)~(9)。由球铰S1、S2的位置关系可求得辅助缓冲支柱P2、P3的伸缩位移p2p3与关节转角θ1θ2θ3之间的关系如式(10)~(11)。

      $$ \left( {\begin{array}{*{20}{l}} {{x_{{{\text{S}}_{\text{1}}}}}} \\ {{y_{{{\text{S}}_{\text{1}}}}}} \\ {{z_{{{\text{S}}_{\text{1}}}}}} \end{array}} \right) = \left( {\begin{array}{*{20}{l}} a\left( {\cos {\theta _1}\cos {\theta _2}\cos {\theta _3} - \sin {\theta _1}\sin {\theta _3}} \right) +\\ b\left( {\cos {\theta _1}\cos {\theta _2}\sin {\theta _3} - \sin {\theta _1}\cos {\theta _3}} \right) +\\ c\cos {\theta _1}\sin {\theta _2} - \sin {\theta _1}{L_1} \\ a\left( {\sin {\theta _1}\cos {\theta _2}\cos {\theta _3} + \cos {\theta _1}\sin {\theta _3}} \right) +\\ b\left( {\sin {\theta _1}\cos {\theta _2}\sin {\theta _3} - \cos {\theta _1}\cos {\theta _3}} \right) + \\ c\sin {\theta _1}\sin {\theta _2} + \cos {\theta _1}{L_1} \\ - a\sin {\theta _2}\cos {\theta _3} - b\sin {\theta _2}\sin {\theta _3} + \\ c\cos {\theta _2} - \sin {\theta _2}\cos {\theta _3}{L_2} \end{array}} \right) $$ (8)
      $$ \left( {\begin{array}{*{20}{l}} {{x_{{{\text{S}}_{\text{1}}}}}} \\ {{y_{{{\text{S}}_{\text{1}}}}}} \\ {{z_{{{\text{S}}_{\text{1}}}}}} \end{array}} \right) = \left( {\begin{array}{*{20}{l}} a\left( {\cos {\theta _1}\cos {\theta _2}\cos {\theta _3} - \sin {\theta _1}\sin {\theta _3}} \right) + \\ b\left( {\cos {\theta _1}\cos {\theta _2}\sin {\theta _3} - \sin {\theta _1}\cos {\theta _3}} \right) -\\ c\cos {\theta _1}\sin {\theta _2} - \sin {\theta _1}{L_1} \\ a\left( {\sin {\theta _1}\cos {\theta _2}\cos {\theta _3} + \cos {\theta _1}\sin {\theta _3}} \right) + \\ b\left( {\sin {\theta _1}\cos {\theta _2}\sin {\theta _3} - \cos {\theta _1}\cos {\theta _3}} \right) -\\ c\sin {\theta _1}\sin {\theta _2} + \cos {\theta _1}{L_1} - \\ a\sin {\theta _2}\cos {\theta _3} -b\sin {\theta _2}\sin {\theta _3} - c\cos {\theta _2} - \\ \sin {\theta _2}\cos {\theta _3}{L_2} \end{array}} \right) $$ (9)
      $$ {p_2} = \sqrt {{{\left( {{x_{{{\text{U}}_{\text{1}}}}} - {x_{{{\text{S}}_{\text{1}}}}}} \right)}^2} + {{\left( {{y_{{{\text{U}}_{\text{1}}}}} - {y_{{{\text{S}}_{\text{1}}}}}} \right)}^2} + {{\left( {{z_{{{\text{U}}_{\text{1}}}}} - {z_{{{\text{S}}_{\text{1}}}}}} \right)}^2}} - {C_2} $$ (10)
      $$ {p_3} = \sqrt {{{\left( {{x_{{{\text{U}}_{\text{2}}}}} - {x_{{{\text{S}}_{\text{2}}}}}} \right)}^2} + {{\left( {{y_{{{\text{U}}_{\text{2}}}}} - {y_{{{\text{S}}_{\text{2}}}}}} \right)}^2} + {{\left( {{z_{{{\text{U}}_{\text{2}}}}} - {z_{{{\text{S}}_{\text{2}}}}}} \right)}^2}} - {C_3} $$ (11)
    • 腿足处于支撑相的时间占单个步态周期时间的比值称为占空比β,根据占空比的不同,四足行走步态可分为静步态(0.75≤β<1)和动步态(0<β<0.75)。为保证着陆器的行走稳定性和高负载性,本文选用连续静步态规划,并令占空比β=0.8,静步态规划中,为保持着陆器运动稳定,需进行姿态调整。同时,静步态因其高占空比导致了移动速度缓慢,为此,需通过减少行走步态中调姿次数来提高其移动速度。

      静步态规划中,有6种步态可保持着陆器占空比β>0.75,如图8所示,其中只有3种可保持着陆器的静态稳定性,如图8(d)、图8(e)和图8(f)。在图8(d)所示迈步顺序中,着陆器需完成4次本体调姿才可依次实现4条腿足迈步;图8(e)和图8(f)中,着陆器如采用前后调姿法,则可将调姿次数缩短为2次,即1次调姿实现2条腿足迈步。因此,选用图8(e)所示迈步顺序进行直行和右转弯步态规划,选用图8(f)所示迈步顺序进行左转弯步态规划,调姿方向均为前后调姿。

      图  8  6种静步态迈步顺序

      Figure 8.  Step sequence of 6 kinds of static gait

      着陆器直行过程中各腿足机构的运动时序如图9所示。其中,支撑相表示腿足处于支撑状态且构成支撑三角形,摆动相表示腿足处于迈步状态,此时着陆器处于迈步状态;扩展支撑相表示腿足处于支撑状态并构成支撑四边形,此时着陆器处于调姿状态。着陆器在前进和右转弯步态中,以“调姿—左前腿足迈步—右前腿足迈步—调姿—右后腿足迈步—左后腿足迈步—调姿”为周期序列;左转弯步态中,以“调姿—右前腿足迈步—左前腿足迈步—调姿—左后腿足迈步—右后腿足迈步—调姿”为周期序列。

      图  9  静步态序列图

      Figure 9.  Static gait sequence

      图10为静步态行走示意图,着陆器直行步态初始状态如图10(a)所示,其中,正方形为着陆器本体,其质心位于本体几何中心,4个圆表示足垫末端位置,其中黑色表示支撑相,灰色表示摆动相;着陆器向前运动时,着陆器本体需向后调姿,如图10(b)所示;之后,腿足LF向前迈步,此时着陆器本体质心位于腿足RF、LB和RB组成的支撑三角形内,着陆器处于稳定状态,如图10(c)所示;然后,腿足RF向前迈步,同理,着陆器处于稳定状态,如图10(d)所示;再次,着陆器各腿足处于支撑相,着陆器本体向前调姿,如图10(e)所示;然后,腿足RB和LB相继迈步,着陆器本体均处于稳定状态,如图10(f)和10(g)所示;最后,着陆器本体向后调姿回到初始状态,此时着陆器完成向前运动的一个步态周期,如图10(h)。

      图  10  四足直行步态示意图

      Figure 10.  Walking gait

      着陆器转弯步态(以右转弯为例)与行走步态相似,只在各腿足迈步和中间调姿过程中存在差异,具体如图11所示。着陆器本体向后调姿后,腿足LF向右前方迈步,此时腿足RF、RB和LB构成稳定三角形,如图11(c)所示;然后,腿足RF向右前方迈步,腿足LF、LB和RB构成稳定三角形,如图11(d)所示;然后着陆器本体向前调姿并向右转弯,如图11(e)所示;之后,腿足RB、LB分别向左前方迈步,如图11(f)、11(g)所示;最后着陆器本体向后调姿回到初始位置,如图11(h)所示。

      图  11  四足转弯步态示意图

      Figure 11.  Turning gait

    • 根据着陆器行走及转弯步态设计,其足端轨迹规划可分为调姿轨迹和迈步轨迹。当着陆器腿足在地面处于支撑相时,足端轨迹保持不变;当腿足处于扩展支撑相时,足端轨迹为调姿轨迹;当腿足处于摆动相时,足端轨迹为迈步轨迹。着陆器调姿过程中,腿足与地面保持不变,着陆器本体相对于地面移动,此时调姿轨迹为足端相对于本体移动的一条直线。由于着陆器移动速度较低,迈步时间较长,故足端离地和落地时,其速度与加速度突变值较小,不会引起着陆器腿足机构的剧烈振动和碰撞。因此,在忽略速度、加速度影响的情况下,本文采用方便调节迈步参数的抛物曲线对上述各种足端轨迹进行描述,如图12所示,其轨迹定义如下

      $$ \left\{ {\begin{array}{*{20}{l}} {x\left( t \right) = - \dfrac{{4h}}{{{s^2}}}{{\left[ {{B_1}\left( t \right)} \right]}^2} + \dfrac{{4h}}{s}{B_1}\left( t \right) + {x_{\text{F}}}} \\ {y\left( t \right) = s\cos \left( \alpha \right){B_2}\left( t \right) + {y_{\text{F}}}} \\ {z\left( t \right) = s\sin \left( \alpha \right){B_3}\left( t \right) + {z_{\text{F}}}} \end{array}} \right. $$ (12)

      其中:x(t)、y(t)、z(t)为足端在机体坐标系{OB}下的位移变化量;xFyFzF为足端在机体坐标系下的位置量;s为迈步步长;h为迈步高度;B1B2B3为迈步调节因子,可以通过修改B1B2B3的值来调节单个迈步轨迹所耗时间。当足端为迈步轨迹时,x(t)、y(t)、z(t)均发生变化;当足端为调姿轨迹时,步高h为0,x(t)分量不变、y(t)、z(t)发生变化。

      图  12  足端轨迹规划示意图

      Figure 12.  Trajectory planning of foot-end

    • 为验证步态设计的有效性,采用Adams进行了仿真。着陆器质量为1 200 kg,设定重力加速度为1.63 m/s2,设定着陆器步态周期为4 s,步距为40 mm,步高为60 mm,其各部分质量参数如表3所示。

      表 3  着陆器各部分质量参数

      Table 3.  Mass parameters of the lander

      部分质量/kg
      本体681.34
      推杆7.15
      腿杆25.64
      足垫1.93
      主缓冲器24.33
      辅助缓冲器29.06

      根据着陆器足端轨迹和步态设计求解得到各腿足末端相对机体坐标系的“位移—时间”序列后,通过运动学逆解与映射求解得到各驱动关节(主/辅助缓冲支柱)的“位移—时间”序列,图13为直行步态中各腿足驱动关节的位移曲线,可以看出,各驱动所设计的“位移—时间”曲线平顺呈周期变化,主支柱行程为−38~45 mm,辅助支柱行程为−30~32 mm。着陆器行走步态中,着陆器本体沿移动方向调姿,θ2关节未发生转动,故表现为辅助支柱P2P3“位移—时间”曲线一致。

      图  13  行走步态驱动位移时间曲线

      Figure 13.  Driver’s displacement-time curve of walking gait

      之后,将各驱动关节的“位移—时间”曲线作为仿真输入,可得着陆器行走步态和转弯步态仿真如图14图15所示。可以看出,各腿足迈步顺序与所规划步态序列一致,本体质心沿移动方向变化并始终处于支撑多边形内。

      图  14  四足直行仿真示意图

      Figure 14.  Simulation of walking gait

      图  15  四足转弯仿真示意图

      Figure 15.  Simulation of turning gait

      着陆器步态仿真过程中,本体质心位移曲线如图16所示。可以看出,行走和转弯步态中,本体质心沿Z方向均无明显波动与偏移,其中,转弯步态Z方向波动逐步增大是由于测量坐标系为地面坐标系,着陆器在转弯步态中Z方向位移分量逐步增大,因此表现为Z方向波动增大。本体质心沿X方向存在上下波动,波动位移约为45 mm,即本体上下起伏较小,起伏量约占本体高度的3.44%。本体质心沿Y方向位移中,行走步态因存在调姿与移动呈波动式增长,此时,着陆器行走速度约为0.01 m/s,转弯步态因存在调姿呈周期式波动。

      图  16  本体质心位移曲线图

      Figure 16.  Displacement-time curve of centre of mass

      本体质心姿态变化曲线如图17所示。行走步态中,着陆器本体俯仰角、偏航角和滚转角无较大偏移,均维持在0°左右,上下波动均未超过0.8°。转弯步态中,着陆器本体俯仰角和滚转角均无较大偏移,偏航角因转弯呈阶跃式增长,转弯速度约为0.6 °/s,即转弯90°约需150 s。

      图  17  本体姿态曲线图

      Figure 17.  Posture angle of body

      着陆器整机功耗曲线如图18所示。单个步态周期中,着陆器瞬时最大功率为600 W,平均负载功率为89.83 W。目前深空探测任务中,小天体探测器采用太阳能电池阵与蓄电池组合的方法,输出功率可达数百瓦甚至数千瓦,星表着陆器采用放射性同位素电池,输出功率可达300 W[35]。因此,着陆器功耗满足一般航天器供电要求。

      图  18  单个步态周期内整器功耗

      Figure 18.  Power consumption of the whole device in single gait period

    • 研制的可移动月球着陆器试验样机如图19所示。试验样机本体尺寸为1 600×1 600×680 mm,样机高度为1 295 mm,整机质量约200 kg。

      结构部分整机均采用硬质铝合金,部分承力件与传动件为钢件。驱动部分选用直流无刷电机,配合减速器、制动器和编码器实现旋转角度的精确控制。传动部分选用同步带带动滚珠丝杠传动,丝杠螺距为5 mm,单条着陆腿有效推力可达44 kN。各部件具体性能参数如表4~5所示。

      图  19  可移动月球着陆器样机

      Figure 19.  Prototype of mobile lunar lander

      表 4  直流电机性能参数表

      Table 4.  Performance parameters of DC-motor

      产品型号额定

      压/V
      额定

      流/A
      额定

      速/rpm
      额定
      扭矩/
      (mN·m)
      质量/
      kg
      Maxon-EC 60无刷
      直流电机
      485.92 6805432.4

      表 5  减速器性能参数表

      Table 5.  Performance parameters of reducer

      产品型号减速比级数最大连续输出
      功率/W
      最大瞬时输
      出功率/W
      质量/
      kg
      Maxon GP 81行星
      齿轮减速器
      51:137401 1003.7

      控制部分采用FPGA控制器,负责步态规划与解算、腿足闭环控制、传感器信息处理以及与地面站交换数据等工作,其原理如图20所示。

      图  20  可移动月球着陆器控制系统

      Figure 20.  Control system of mobile lunar lander

      为配合地面行走试验,搭建样机地面试验系统如图21所示。为测试可移动着陆器控制系统及步态算法的可行性,编写控制系统上位机软件,通过地面站发送上位机软件指令对着陆器进行初始化配置,之后通过遥控器发送操作指令,着陆器即可依据指令进行移动。

      图  21  样机地面试验系统

      Figure 21.  Ground test system of prototype

      基于研制的可移动月球着陆器样机和相应试验辅助装置进行了Walk步态实验。在悬吊装置的保护下,对样机开展了水平路面行走实验,实验过程如图22所示。为保证行走安全可靠及数据采集有效,将单个步态周期耗时调整为14 min左右,行走结果表明:平均每个步态周期向前实际移动72 mm,着陆器整机移动过程中无较大抖动与偏移。

      图  22  样机地面行走实验

      Figure 22.  Ground walking test of prototype

    • 本文提出了一种兼具缓冲与行走功能的新型着陆器,进行了整器系统设计、步态设计、虚拟样机仿真以及地面行走试验。首先,介绍了着陆器系统设计,并对可变构型式主体和缓冲/驱动集成式缓冲器的功能实现进行了介绍;其次,在着陆器3自由度腿足运动学模型的基础上,进行了减少调姿次数的直行和转弯的静步态规划,设计了足端迈步与调姿轨迹。最后,对该着陆器进行了虚拟样机仿真及地面行走试验。结果表明:可移动着陆器运动学模型建立正确,规划的驱动位移时间曲线合理;腿足机构运动平顺,可实现行走转弯步态;行走转弯步态稳定,均无较大偏移,本体起伏约45 mm;行走步态中,着陆器移动速度约为0.01 m/s,姿态角波动均未超过1°,转弯步态中,着陆器转弯速度约为0.6°/s,俯仰角和滚转角波动均未超过1°。综上,本文研究成果可为可移动着陆器研究提供一定的设计参考。

参考文献 (35)

目录

    /

    返回文章
    返回