中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月基对地观测研究现状与展望

郭华东 丁翼星 刘广

郭华东, 丁翼星, 刘广. 月基对地观测研究现状与展望[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210080
引用本文: 郭华东, 丁翼星, 刘广. 月基对地观测研究现状与展望[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210080
GUO Huadong, Ding Yixing, Liu Guang. Research Status and Prospect of Moon-Based Earth Observation: A Review[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210080
Citation: GUO Huadong, Ding Yixing, Liu Guang. Research Status and Prospect of Moon-Based Earth Observation: A Review[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210080

月基对地观测研究现状与展望

doi: 10.15982/j.issn.2096-9287.2022.20210080
基金项目: 国家自然科学基金(41950853,41501403);中国科学院前沿科学重点研究计划项目(QYZDY-SSW-DQC026)
详细信息
    作者简介:

    郭华东(1950– ),男,研究员,博士生导师,中国科学院院士,俄罗斯科学院外籍院士,芬兰科学与人文院外籍院士,发展中国家科学院院士,主要研究方向:遥感信息机理、雷达对地观测、数字地球科学。通讯地址:北京市海淀区邓庄南路中国科学院空天信息创新研究院(100094)电话:(010)82178000E-mail:hdguo@radi.ac.cn

  • ● Moon - based earth observation is characterized by long - term, integrity, stability and uniqueness. ● The Moon - based interferometric radar is expected to be the only method to continuously observe the macroscopic motion of the solid Earth. ● The moon-based wide-band radiometer and array spectrometer provide a new perspective for Earth’s radiation balance observation. Exploring new scientific objectives and developing new space and Earth observation technologies are the main directions of future Moon-based earth observation research.
  • 中图分类号: 中图分类号:补充 文献标识码:A 文章编号:

Research Status and Prospect of Moon-Based Earth Observation: A Review

  • 摘要: 在月球上布设遥感传感器能实现长期、整体、稳定的对地观测,完善现有系统的观测能力,尤其是能从地球系统外部来观测地球系统本身的演化过程,以及地球系统与外部的相互作用和影响。从科学目标、传感器技术、参数模拟和估算方法以及观测站选址4个方面详细论述了月基对地观测研究进展,围绕涉及的关键科学问题进行推进,并且针对传感器论证、任务设计、数据处理和信息提取提出的一系列新模型和新方法进行了总结。最后对月基对地观测研究的发展提出了一些建议。
    Highlights
    ● Moon - based earth observation is characterized by long - term, integrity, stability and uniqueness. ● The Moon - based interferometric radar is expected to be the only method to continuously observe the macroscopic motion of the solid Earth. ● The moon-based wide-band radiometer and array spectrometer provide a new perspective for Earth’s radiation balance observation. Exploring new scientific objectives and developing new space and Earth observation technologies are the main directions of future Moon-based earth observation research.
  • [1] ROSENQVIST A,SHIMADA M,CHAPMAN B,et al. The global rain forest mapping project—a review[J]. International Journal of Remote Sensing,2000,21(6-7):1375-1387. doi:  10.1080/014311600210227
    [2] WOERNER J , FOING B . The "Moon village" concept and initiative[C]// Annual Meeting of the Lunar Exploration Analysis Group. Columbia: [s. n. ], 2016.
    [3] NASA. What is artemis?[EB/OL]. (2019-07-26)[2021-08-31]. https://www.nasa.gov/feature/what-is-artemis/.
    [4] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展,2004,19(3):351-358. doi:  10.3321/j.issn:1001-8166.2004.03.001

    OUYANG Z Y. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advance In Earth Sciences,2004,19(3):351-358. doi:  10.3321/j.issn:1001-8166.2004.03.001
    [5] CARRUTHERS G R,PAGE T. Apollo 16 far-ultraviolet camera/spectrograph:Earth observations[J]. Science,1972,177(4051):788-791. doi:  10.1126/science.177.4051.788
    [6] FENG J,LIU J,HE F,et al. Data processing and initial results from the CE-3 Extreme Ultraviolet Camera[J]. Research in Astronomy and Astrophysics,2014,14(12):1664. doi:  10.1088/1674-4527/14/12/014
    [7] GUO H,LIU G,DING Y. Moon-based Earth observation:scientific concept and potential applications[J]. International Journal of Digital Earth,2018,11(6):546-557. doi:  10.1080/17538947.2017.1356879
    [8] XU L,ZOU Y L,JIA Y Z. China's planning for deep space exploration and lunar exploration before 2030[J]. Chinese Journal of Space Science,2018,38(05):11-12.
    [9] JAUMANN R,HIESINGER H,ANAND M,et al. Geology,geochemistry,and geophysics of the Moon:Status of current understanding[J]. Planetary and Space Science,2012,74(1):15-41. doi:  10.1016/j.pss.2012.08.019
    [10] COCHRAN E S,VIDALE J E,TANAKA S,et al. Earth tides can trigger shallow thrust fault earthquakes.[J]. Science,2004,306(5699):1164-1166. doi:  10.1126/science.1103961
    [11] HANSEN J,SATO M,KHARECHA P,et al. Earth's energy imbalance and implications[J]. Atmospheric Chemistry and Physics,2011,11(9):27031-27105.
    [12] WILD M,D FOLINI,SCHAER C,et al. The global energy balance from a surface perspective[J]. Climate Dynamics,2013,40(11-12):3107-3134. doi:  10.1007/s00382-012-1569-8
    [13] HARTMANN D L,OCKERT-BELL M E,MICHELSEN M L. The effect of cloud type on Earth's energy balance:global analysis[J]. Journal of Climate,1992,5(11):1281-1304. doi:  10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2
    [14] SCHUCKMANN K V,PALMER M D,TRENBERTH K E,et al. An imperative to monitor Earth's energy imbalance[J]. Nature Climate Change,2016,6:138-144. doi:  10.1038/nclimate2876
    [15] ANDERSON D E,CA HALAN R F. The Solar Radiation and Climate Experiment (SORCE) mission for the NASA Earth Observing System (EOS)[J]. Solar Physics,2005,230(1-2):3-6. doi:  10.1007/s11207-005-1592-6
    [16] WIELICKI B A. Clouds and the Earth's Radiant Energy System (CERES):algorithm overview[J]. Bulletin of the American Meteorological Society,1998,36(4):1127-1141.
    [17] TRÉMAS T L, KAROUCHE N , ROSAK A , et al. ScaRaB: first results of the scanner for radiative budget on board the Indo-French satellite Megha-Tropiques[C]// SPIE Optical Engineering + Applications. San Diego: SPIE, 2012.
    [18] WIELICKI B A, WONG T, YOUNG D F, et al. Differences between ERBE and CERES tropical mean fluxes: ENSO, climate change or calibration?. 2005. 期刊名, 卷期, 页码范围
    [19] FRÖHLICH C. Total solar irradiance observations[J]. Surveys in Geophysics,2012,33(3-4):453-473. doi:  10.1007/s10712-011-9168-5
    [20] FRÖHLICH C,LEAN J. The Sun's total irradiance:Cycles,trends and related climate change uncertainties since 1976[J]. Geophysical Research Letters,1998,25(23):4377-4380. doi:  10.1029/1998GL900157
    [21] LOEB N G,WIELICKI B A,DOELLING D R,et al. Toward optimal closure of the Earth's top-of-atmosphere radiation budget[J]. Journal of Climate,2009,22(3):748-766. doi:  10.1175/2008JCLI2637.1
    [22] TRENBERTH K E,FASULLO J T. Tracking Earth's energy[J]. Science,2010,328(5976):316-317. doi:  10.1126/science.1187272
    [23] LOEB N G,LYMAN J M,JOHNSON G C,et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty[J]. Nature Geoscience,2012,5(2):110-113. doi:  10.1038/ngeo1375
    [24] 许厚泽,张赤军. 我国大地重力学和固体潮研究进展[J]. 地球物理学报,1997,40(S1):192-205.

    XU H Z,ZHANG C J. Development of the studies on geodetic gravity and earth tides in China[J]. Acta Geophysica Sinica,1997,40(S1):192-205.
    [25] CASSAN A,KUBAS D,BEAULIEU J P,et al. One or more bound planets per Milky Way star from microlensing observations[J]. Nature,2012,481:167-69. doi:  10.1038/nature10684
    [26] KARALIDI T,STAM D M,SNIK F,et al. Observing the Earth as an exoplanet with LOUPE,the lunar observatory for unresolved polarimetry of Earth[J]. Planetary & Space Science,2012,74(1):202-207.
    [27] SPARKS W B,HOUGH J,GERMER T A,et al. Detection of circular polarization in light scattered from photosynthetic microbes[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(19):7816-7821. doi:  10.1073/pnas.0810215106
    [28] TINETTI G,MEADOWS V S,CRISP D,et al. Detectability of planetary characteristics in disk-averaged spectra. I:the Earth model[J]. Astrobiology,2006,6(1):34-47. doi:  10.1089/ast.2006.6.34
    [29] KALTENEGGER L,TRAUB W A,JUCKS K W. Spectral evolution of an Earth-like planet[J]. The Astrophysical Journal,2006,658(1):598-616.
    [30] BHARDWAJ A,ELSNER R F,RANDALL G G,et al. X-rays from solar system objects[J]. Planetary and Space Science,2007,55(9):1135-1189. doi:  10.1016/j.pss.2006.11.009
    [31] 郭亦鸿, 王赤, 韦飞, 等. 月基软X射线成像仪——对地球磁层的全景观测[J]. 中国科学: 地球科学. 2021, 51(7): 1009-1017.

    GUO Y H, WANG C, WEI F, et al. A Lunar-based Soft X-ray Imager (LSXI) for the Earth’s magnetosphere[J]. Science China Earth Sciences, 2021, 64(7): 1026-1035.
    [32] 何飞,陈波,张效信. 月基观测地球等离子体层极紫外辐射特性[J]. 光学精密工程,2010(12):2564-2573.

    HE F,CHEN B,ZHANG X X. Moon-based imaging of Earth plasmaspheric extreme ultraviolet radiation[J]. Optics and Precision Engineering,2010(12):2564-2573.
    [33] MOCCIA A,RENGA A. Synthetic aperture radar for Earth observation from a lunar base:performance and potential applications[J]. IEEE T Aero Elec Sys,2010,46:1034-1051. doi:  10.1109/TAES.2010.5545172
    [34] FORNARO G,FRANCESCHETTI G,LOMBARDINI F,et al. Potentials and limitations of Moon-borne SAR imaging[J]. IEEE T Geosci Remote Sens,2010,48:3009-3019. doi:  10.1109/TGRS.2010.2041463
    [35] 郭华东,丁翼星,刘广,等. 面向全球变化探测的月基成像雷达概念研究[J]. 中国科学:地球科学,2013(11):1760-1769.

    GUO H D,DING Y X,LIU G,et al. Conceptual study of lunar-based SAR for global change monitoring[J]. Science China:Earth Sciences,2013(11):1760-1769.
    [36] 李德伟,江利明,蒋厚军,等. 月基SAR对地观测系统参数分析[J]. 系统工程与电子技术,2020,42(4):66-72.

    LI D W,JIANG L M,JIANG H J,et al. System parameters analysis of the Moon-based SAR Earth observation[J]. Systems Engineering and Electronics,2020,42(4):66-72.
    [37] XU Z , CHEN K S , GUO H . Doppler estimation with "Non-Stop-and-Go" assumption in Moon-based SAR imaging[C]// 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018.
    [38] XU Z,CHEN K S. On signal modeling of Moon-based Synthetic Aperture Radar (SAR) imaging of Earth[J]. Remote Sensing,2018,10(3):486-511. doi:  10.3390/rs10030486
    [39] XU Z,CHEN K S. Effects of the Earth's curvature and lunar revolution on the imaging performance of the Moon-based synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(8):5868-5882. doi:  10.1109/TGRS.2019.2902842
    [40] XU Z,CHEN K S,ZHOU G. Effects of the Earth's irregular rotation on the Moon-based synthetic aperture radar imaging[J]. IEEE Access,2019,99:155014-155027.
    [41] XU Z , CHEN K S , GUO H . Effects of temporally-varying tropospheric path delay on the imaging performance of Moon-based SAR[C]// 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall). Xiamen: [s. n. ], 2019.
    [42] XU Z,CHEN K S,LI Z L,et al. Apsidal precession effects on the lunar-based synthetic aperture radar imaging performance[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(6):1079-1083. doi:  10.1109/LGRS.2020.2992508
    [43] DONG J,SHEN Q,JIANG H,et al. Spatio-temporal distribution of the zero-Doppler line of lunar-based SAR[J]. Remote Sensing Letters,2020,12(2):165.只一页吗?页码范围.
    [44] XU Z,CHEN K S,ZHOU G. Zero-Doppler centroid steering for the Moon-Based synthetic aperture radar:a theoretical analysis[J]. IEEE Geoscience and Remote Sensing Letters,2020,17(7):1208-1212. doi:  10.1109/LGRS.2019.2941505
    [45] DUAN,WENTAO,HUANG,SHAOPENG,NIE,CHENWEI. Entrance pupil irradiance estimating model for a Moon-based Earth radiation observatory instrument[J]. Remote Sensing,2019,11(5):583只一页吗?页码范围.
    [46] DUAN W,HUANG S,NIE C. Conceptual design of a Moon-based Earth radiation observatory[J]. International Journal of Remote Sensing,2018,39(18):5834-5849. doi:  10.1080/01431161.2018.1512770
    [47] YUAN L, LIAO J, A physical-based algorithm for retrieving land surface temperature from moon-based Earth observation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1856-1866.
    [48] LI T,GUO H,ZHANG L,et al. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Frontier of Earth Science,2020(1):236-250.
    [49] 丁翼星, 郭华东, 刘广. 面向全球变化探测的月基对地观测覆盖性能分析[J]. 湖南大学学报(自然科学版), 41(10): 96-102.

    DING Y X, GUO H D, LIU G. Coverage performance analysis of Earth observation from lunar base for global change detection[J]. Journal of Hunan University(Natural Sciences), 41(10): 96-102.
    [50] GUO H,YE H,LIU G,et al. Error analysis of exterior orientation elements on geolocation for a Moon-based Earth observation optical sensor[J]. International Journal of Digital Earth,2018,13(11):374-392.
    [51] YE H,GUO H,LIU G,et al. Temporal sampling error analysis of the Earth's outgoing radiation from a Moon-based platform[J]. International Journal of Remote Sensing,2019,40(17-18):6975-6992.
    [52] CARRUTHERS G R. Apollo 16 far-ultraviolet camera/spectrograph:instrument and operations[J]. Applied Optics,1973,12(10):2501-2508. doi:  10.1364/AO.12.002501
    [53] 李朝辉. 月基对地观测极紫外相机光机结构设计[J]. 仪器仪表学报,2010,31(010):2352-2356.

    LI Z H. Optomechanical design of lunar based EUV camera for mapping the Earth[J]. Chinese Journal of Scientific Instrument,2010,31(010):2352-2356.
    [54] 王智,李朝辉. 月基极紫外相机光机结构设计[J]. 光学精密工程,2011(10):125-131.

    WANG Z,LI M H. Design of optical-mechanical structure for lunar-based extreme ultraviolet camera[J]. Optics and Precision Engineering,2011(10):125-131.
    [55] 何飞. 月基地球等离子体层极紫外观测与图像反演方法研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2011.

    HE F. Moon-based extreme ultraviolet observations of the Earth’s plasmasphere and image inversion methods[D]. Changchun: Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2011.
    [56] 丁翼星,郭华东,刘广. 基于JPL星历的月基SAR多普勒参数估算方法[J]. 北京航空航天大学学报,2015,41(1):71-76.

    DING Y X,GUO H D,LIU G. Method to estimate the Doppler parameters of moon-borne SAR using JPL ephemeris[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(1):71-76.
    [57] DING Y,GUO H,LIU G,et al. Constructing a high-accuracy geometric model for Moon-Based Earth observation[J]. Remote Sensing,2019,11(22):2611. doi:  10.3390/rs11222611
    [58] LIU G,GUO H,HANSSEN R F. Characteristics analysis of Moon-based Earth observation under the ellipsoid model[J]. International Journal of Remote Sensing,2020,41(23):9121-9139. doi:  10.1080/01431161.2020.1797220
    [59] SUI Y,GUO H,LIU G,et al. Analysis of long-term Moon-based observation characteristics for Arctic and Antarctic[J]. Remote Sensing,2019,11(23):2805. doi:  10.3390/rs11232805
    [60] LIU H,GUO H,LIU G,et al. An exploratory study on moon-based observation coverage of sea ice from the geometry[J]. International Journal of Remote Sensing,2020,41(16):6089-6098. doi:  10.1080/01431161.2020.1734258
    [61] YE H,GUO H,LIU G,et al. Looking vector direction analysis for the moon-based earth observation optical sensor[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(11):4488-4499. doi:  10.1109/JSTARS.2018.2870247
    [62] SHEN G,GUO H,LIU G,et al. Geometry numerical simulation and analysis for Moon-based Earth observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:3381-3393. doi:  10.1109/JSTARS.2020.2996613
    [63] ZHANG L,GUO H,JIAO H,et al. A polar coordinate system based on a projection surface for moon-based earth observation images[J]. Advances in Space Research,2019,64(11):2209-2220. doi:  10.1016/j.asr.2019.08.022
    [64] XU Z,CHEN K S,LIU G,et al. Spatiotemporal coverage of a Moon-based synthetic aperture radar:theoretical analyses and numerical simulations[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,卷期:码范围.
    [65] REN Y,GUO H,LIU G,et al. Simulation study of geometric characteristics and coverage for Moon-based Earth observation in the electro-optical region[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(6):2431-2440. doi:  10.1109/JSTARS.2017.2711061
    [66] YE H,GUO H,LIU G,et al. Observation duration analysis for Earth surface features from a Moon-based platform[J]. Advances in Space Research,2018,62(2):274-287. doi:  10.1016/j.asr.2018.04.029
    [67] HUANG J,GUO H,LIU G,et al. Spatio-temporal characteristics for Moon-based Earth observations[J]. Remote Sensing,2020,12(17):2848. doi:  10.3390/rs12172848
    [68] WANG H, GUO Q, LI A, et al. Comparative study on the observation duration of the two-polar regions of the Earth from four specific sites on the Moon [J]. International Journal of Remote Sensing. 2020, 41(1): 339-352.
    [69] SHANG H,DING Y,GUO H,et al. Simulation of Earth’s outward radiative flux and its radiance in Moon-based view[J]. Remote Sensing,2021,13(13):2535. doi:  10.3390/rs13132535
    [70] DONG J,SHEN Q,JIANG L,et al. An Analysis of spatiotemporal baseline and effective spatial coverage for lunar-based sar repeat-track interferometry[J]. Selected Topics in Applied Earth Observations and Remote Sensing,IEEE Journal of,2019,12(9):3458-3469.刊名不对.
    [71] 董景龙,江利明,沈强,等. 月基SAR 重复轨道干涉测量时-空基线分析[J]. 测绘学报,2019,48(7):849-861.

    DONG J L,JIANG L M,SHEN Q,et al. Spatio-temporal baseline analysis of lunar-based repeat-track SAR interferometry[J]. Acta Geodaetica et Cartographica Sinica,2019,48(7):849-861.
    [72] 李德伟, 江利明, 蒋厚军等. 2019. 固体潮位移InSAR相位模拟及对广域地表形变监测的影响初探. 地球物理学报, 2019, 62 (12): 4527-4539.

    LI D W, JIANG L M, JIANG H J, et al. InSAR phase simulation of solid earth tide and its influence on surface deformation monitoring at wide-area scale[J]. Chinese Journal of Geophysics, 2019, 62 (12): 4527-4539.
    [73] WU K,JI C,LUO L,et al. Simulation Study of Moon-Based InSAR Observation for Solid Earth Tides[J]. Remote Sensing,2020,12(1):123. doi:  10.3390/rs12010123
    [74] NIE C,LIAO J,SHEN G,et al. Simulation of the land surface temperature from moon-based Earth observations[J]. Advances in Space Research,2019,63(2):826-839. doi:  10.1016/j.asr.2018.09.041
    [75] YUAN L,LIAO J. Exploring the influence of various factors on microwave radiation image simulation for Moon-based Earth observation[J]. Frontiers of Earth Science,2020(14):430-445.
    [76] LIAO J,YUAN L,NIE C. A simulation method for thermal infrared imagery from Moon-based Earth observations[J]. IEEE Sensors Journal,2021,21(6):7736-7747. doi:  10.1109/JSEN.2021.3049912
    [77] 张吉栋,孟治国,平劲松,等. 基于LOLA数据的Aristarchus高原光照特性初步研究[J]. 深空探测学报(中英文),2017,4(2):171-177.

    ZHANG J D,MENG Z G,PING J S,et al. Preliminary study of illumination characteristics of Aristarchus plateau using LOLA data[J]. Journal of Deep Space Exploration,2017,4(2):171-177.
    [78] 贾瑛卓,邹永廖. 月基对地观测对月球基地选址需求分析[J]. 航天器工程,2016,25(6):116-121. doi:  10.3969/j.issn.1673-8748.2016.06.018

    JIA Y Z,ZOU Y L. Research on lunar site selection for lunar based Earth observation[J]. Spacecraft Engineering,2016,25(6):116-121. doi:  10.3969/j.issn.1673-8748.2016.06.018
  • [1] 邓玉, 郭华东, 刘广, 叶罕霖, 黄靖.  月基对地观测图像模拟与应用研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.20210073
    [2] 张吉栋, 李向月, 平劲松.  月球南极月基平台选址分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210079
    [3] 柳钮滔, 施贤正, 徐丰, 金亚秋.  月球永久阴影区着陆点选取要求的高分辨率极化SAR数据分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210134
    [4] 黄靖, 郭华东, 刘广, 邓玉.  基于月基观测几何的地球辐射能量模拟研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210078
    [5] 叶罕霖, 邓玉, 刘广, 郭华东.  月基观测地球大气层顶辐射特性研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210074
    [6] 陈国强, 郭华东, 梁达, 丁翼星, 吕明阳, 刘广.  月基SAR对地观测时空特性的研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210076
    [7] 刘奇祺, 陈楠, 林偲蔚.  月表可照时间谱和太阳辐射谱空间分布特征研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210100
    [8] 王越, 王彪, 王汛, 潘辰安, 姚佩雯, 李晨帆, 李勃.  火星探测任务着陆区选址和地质分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190708001
    [9] 张熇, 杜宇, 李飞, 张弘, 马继楠, 盛丽艳, 吴克.  月球南极探测着陆工程选址建议 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191003002
    [10] 侯东辉, 张珅毅, RobertFWimmer-Schweingruber, 于佳, SoenkeBurmeister, 沈国红, 袁斌, 王春琴, 张斌全.  月球粒子辐射环境探测现状 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.003
    [11] 孟治国, 李翠, 平劲松, 黄倩, 蔡占川, AlexanderGusev.  月面冯·卡门撞击坑的着陆选址和科学探测目标浅析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.01.001
    [12] 任德鹏, 李青, 许映乔.  月球基地能源系统初步研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.06.009
    [13] 袁勇, 赵晨, 胡震宇.  月球基地建设方案设想 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.04.008
    [14] 纪奕才, 赵博, 方广有, 平劲松, 吴伟仁, 宁远明, 卢伟, 周斌.  在月球背面进行低频射电天文观测的关键技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.008
    [15] 张锦绣, 陈学雷, 曹喜滨, 安军社.  月球轨道编队超长波天文观测微卫星任务 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.009
    [16] 徐彦, 郑耀, 匡松松, 周盛.  展开式月球基地热防护结构方案研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.012
    [17] 彭超, 高扬.  星间洛仑兹力编队飞行的平衡点及零速度曲面 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.03.010
    [18] 梁常春, 孙鹏飞, 王耀兵, 危清清, 姜水清.  行星采样柔性机械臂运动规划研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.004
    [19] 孟治国, 平劲松, AlexanderGUSEV, 蔡占川, 陈思.  基于CELMS数据的月球东海微波辐射特性研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.03.009
    [20] AlexanderSergeevichKOSOV, VladimirMichailovichGOTLIB, VriiyAlexandrovichKOROGOD, UriiyAlexandrovichNEMLIHER, DmitriyPetrovichSKULACHEV.  俄月球-全球等探测任务中的无线电科学试验 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.03.003
  • 加载中
计量
  • 文章访问数:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2022-03-01

月基对地观测研究现状与展望

doi: 10.15982/j.issn.2096-9287.2022.20210080
    基金项目:  国家自然科学基金(41950853,41501403);中国科学院前沿科学重点研究计划项目(QYZDY-SSW-DQC026)
    作者简介:

    郭华东(1950– ),男,研究员,博士生导师,中国科学院院士,俄罗斯科学院外籍院士,芬兰科学与人文院外籍院士,发展中国家科学院院士,主要研究方向:遥感信息机理、雷达对地观测、数字地球科学。通讯地址:北京市海淀区邓庄南路中国科学院空天信息创新研究院(100094)电话:(010)82178000E-mail:hdguo@radi.ac.cn

  • ● Moon - based earth observation is characterized by long - term, integrity, stability and uniqueness. ● The Moon - based interferometric radar is expected to be the only method to continuously observe the macroscopic motion of the solid Earth. ● The moon-based wide-band radiometer and array spectrometer provide a new perspective for Earth’s radiation balance observation. Exploring new scientific objectives and developing new space and Earth observation technologies are the main directions of future Moon-based earth observation research.
  • 中图分类号: 中图分类号:补充 文献标识码:A 文章编号:

摘要: 在月球上布设遥感传感器能实现长期、整体、稳定的对地观测,完善现有系统的观测能力,尤其是能从地球系统外部来观测地球系统本身的演化过程,以及地球系统与外部的相互作用和影响。从科学目标、传感器技术、参数模拟和估算方法以及观测站选址4个方面详细论述了月基对地观测研究进展,围绕涉及的关键科学问题进行推进,并且针对传感器论证、任务设计、数据处理和信息提取提出的一系列新模型和新方法进行了总结。最后对月基对地观测研究的发展提出了一些建议。

注释:
1)  ● Moon - based earth observation is characterized by long - term, integrity, stability and uniqueness. ● The Moon - based interferometric radar is expected to be the only method to continuously observe the macroscopic motion of the solid Earth. ● The moon-based wide-band radiometer and array spectrometer provide a new perspective for Earth’s radiation balance observation. Exploring new scientific objectives and developing new space and Earth observation technologies are the main directions of future Moon-based earth observation research.

English Abstract

郭华东, 丁翼星, 刘广. 月基对地观测研究现状与展望[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210080
引用本文: 郭华东, 丁翼星, 刘广. 月基对地观测研究现状与展望[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210080
GUO Huadong, Ding Yixing, Liu Guang. Research Status and Prospect of Moon-Based Earth Observation: A Review[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210080
Citation: GUO Huadong, Ding Yixing, Liu Guang. Research Status and Prospect of Moon-Based Earth Observation: A Review[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210080
参考文献 (78)

返回顶部

目录

    /

    返回文章
    返回