中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于月基观测几何的地球辐射能量模拟研究

黄靖 郭华东 刘广 邓玉

黄靖, 郭华东, 刘广, 邓玉. 基于月基观测几何的地球辐射能量模拟研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210078
引用本文: 黄靖, 郭华东, 刘广, 邓玉. 基于月基观测几何的地球辐射能量模拟研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210078
HUANG Jing, GUO Huadong, LIU Guang, DENG Yu. Geometric Simulation of Earth’s Outgoing Radiation Viewed from a Moon-Based Platform[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210078
Citation: HUANG Jing, GUO Huadong, LIU Guang, DENG Yu. Geometric Simulation of Earth’s Outgoing Radiation Viewed from a Moon-Based Platform[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210078

基于月基观测几何的地球辐射能量模拟研究

doi: 10.15982/j.issn.2096-9287.2022.20210078
基金项目: 国家自然科学基金(41590852)
详细信息
    作者简介:

    黄靖(1996– ),女,博士生,主要研究方向:月基对地观测。通讯地址:中国科学院空天信息创新研究院(100094)电话:(010)82178182E-mail:huangjing@radi.ac.cn

    刘广(1979– ),男,教授,博士生导师,主要研究方向:月基对地观测,微波遥感对地观测研究。本文通讯作者。通讯地址:中国科学院空天信息创新研究院(100094)电话:(010)82178103E-mail:liuguang@radi.ac.cn

  • ● A simulation method for Earth outgoing radiation viewed from a Moon-based platform is proposed based on one-to-one mapping method considering observation geometry of the Earth and the Moon. ● Experiments of Earth outgoing longwave and shortwave radiation viewed from a Moon-based sensor in one year are carried out and the regularity is found out according to the characteristics of the lunar orbit. ● The characteristics of spatial coverage and angular distribution are analyzed. ● The simulation method can effectively support the observation of Earth’s outgoing radiation and lay the foundation for future research.

Geometric Simulation of Earth’s Outgoing Radiation Viewed from a Moon-Based Platform

  • 摘要: 月基平台以其整体性、多角度、长周期等特点,可望实现对地球整体辐射收支进行精确估算。为了评估月基平台对地球辐射能量的观测能力,建立了基于地月几何关系的一一映射算法,使用戈达德地球观测系统模型第五版(Goddard Earth Observation System model version 5,GEOS-5)数据作为模型输入,用以模拟月基视场地球向外辐射能量,从而形成对月基观测的地球辐射能量规律性认识。结果表明:月基传感器可以观测包括极区在内约178°跨度的经纬度区域;月球变轨道倾角将为地球高纬度地区提供更好的观测条件,极区观测高度角可达到60°。该模拟方法可以为观测地球向外辐射提供有效支持,为后续研究打下坚实的基础。
    Highlights
    ● A simulation method for Earth outgoing radiation viewed from a Moon-based platform is proposed based on one-to-one mapping method considering observation geometry of the Earth and the Moon. ● Experiments of Earth outgoing longwave and shortwave radiation viewed from a Moon-based sensor in one year are carried out and the regularity is found out according to the characteristics of the lunar orbit. ● The characteristics of spatial coverage and angular distribution are analyzed. ● The simulation method can effectively support the observation of Earth’s outgoing radiation and lay the foundation for future research.
  • 图  1  地月几何关系示意图

    Fig.  1  Geometry relationship between Earth and Moon

    图  2  映射关系示意图

    Fig.  2  Diagram of mapping relationship

    图  3  月基平台观测范围覆盖性能流程图

    Fig.  3  Flow chart of Moon-based Earth observational coverage performance

    图  4  月基观测地球视场图

    Fig.  4  Earth spatial coverage from a Moon-based platform

    图  5  传感器位于月球南极观测地球[24]

    Fig.  5  Time window of North Pole and South Pole of the Earth when the Moon-based sensor is located at the South Pole of the Moon[24]

    图  6  传感器位于月球南极观测地球[24]

    Fig.  6  Observation duration of North Pole and South Pole of the Earth when the Moon-based sensor is located at the South Pole of the Moon[24]

    图  7  观测天顶角分布及观测方位角分布

    Fig.  7  Distribution of zenith angle and azimuth angle

    图  8  观测天顶角在星下点纬度为28°N和 28°S时的分布

    Fig.  8  Distribution of zenith angle when the nadir point is at 28°N and 28°S

    图  9  月基观测一年内地球向外长波和短波辐射变化

    Fig.  9  Variations of Earth outgoing longwave and shortwave radiation from a Moon-based platform in one year

  • [1] GUO H D,LIU G,DING Y X. Moon-based Earth observation:scientific concept and potential applications[J]. International Journal of Digital Earth,2018,11(6):546-557. doi:  10.1080/17538947.2017.1356879
    [2] CORNELL S I, COLIN P, JOANNA H, et al. Understanding the Earth system: global change science for application[M]. UK: Cambridge University Press, 2012.
    [3] LORENTZ S R, BRISCOE J S, SMITH A W. NISTAR: continuous total and short wave measurements of the full sunlit Earth disk from L1 [C]//AGU Fall Meeting. [S. l. ]: AGU, 2016.
    [4] HOUSE F B,ARNOLD G,GARRY E H,et al. History of satellite missions and measurements of the Earth radiation budget (1957–1984)[J]. Geophysics,1986,24(2):357-377.
    [5] JACOBOWITZ H,SOULE H V,KYLE H L,et al. The Earth radiation budget (Erb) experiment - an overview[J]. Journal of Geophysical Research-Atmospheres,1984,89(Nd4):5021-5038. doi:  10.1029/JD089iD04p05021
    [6] SHRESTHA A K, KATO S, WONG T, et al. Spectral unfiltering of ERBE WFOV nonscanner shortwave observations and revisiting its radiation dataset from 1985 to 1998[C]//International Radiation Symposium. Auckland, New Zealand: AIP Publishing LLC, 2017.
    [7] GOLOVKO V. The Earth radiation budget, 20 years later (1985–2005)[M]. Springer : Berlin Heidelberg, 2009
    [8] WIELICKI B A,BRUCE R B,EDWIN F H,et al. Clouds and the Earth's Radiant Energy System (CERES):an Earth observing system experiment[J]. Bulletin of the American Meteorological Society,1998,36(4):1127-1141.
    [9] MATTHEWS G. In-flight spectral characterization and calibration stability estimates for the Clouds and the Earth's Radiant Energy System (CERES)[J]. Journal of Atmospheric & Oceanic Technology,2008,26(9):1-8.
    [10] FOLKMAN M, JARECKE P, HEDMAN T, et al. Calibration of a shortwave reference standard by transfer from a blackbody standard using a cryogenic active cavity radiometer[C]//Geoscience and Remote Sensing Symposium, [S. l. ]: IGARSS, 1994.
    [11] KATO S,NORMAN G L,DAVID A R,et al. Clouds and the Earth's Radiant Energy System (CERES) data products for climate research[J]. Journal of the Meteorological Society of Japan,2015,93(6):597-612.
    [12] QIU H,HU L,ZHANG Y,et al. Absolute radiometric calibration of Earth radiation measurement on FY-3B and its comparison with CERES/aqua data[J]. IEEE Transactions on Geoscience & Remote Sensing,2012,50(12):4965-4974.
    [13] BURT J, SMITH B. Deep space climate observatory: the DSCOVR mission[C]//2012 Ieee Aerospace Conference. [S. l]: IEEE, 2012.
    [14] VALERO F. Keeping the DSCOVR mission alive[J]. Science,2006,311(5762):775-776.
    [15] WIELICKI B A,YOUNG D F,MLYNCZAK M G,et al. Achieving climate change absolute accuracy in orbit[J]. Bulletin of the American Meteorological Society,2013,94(10):1519-1539. doi:  10.1175/BAMS-D-12-00149.1
    [16] GRISTEY J J,J. CHRISTINE C,ROBERT J G,et al. Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites[J]. Journal of Geophysical Research Atmospheres,2017,122(2):1-9.
    [17] SWARTZ W H, LARS P D, STEVEN R L, et al. The RAVAN CubeSat mission: advancing technologies for climate observation[C]// The Geoscience and Remote Sensing Symposium. [S.l.]: IEEE, 2015.
    [18] SONG Y T,WANG X Q,BI S S,et al. Effects of solar radiation,terrestrial radiation and lunar interior heat flow on surface temperature at the nearside of the Moon:based on numerical calculation and data analysis[J]. Advances in Space Research,2017,60(5):938-947. doi:  10.1016/j.asr.2017.05.013
    [19] JIA Y,ZOU Y. Research on lunar site selection for lunar based Earth observation[J]. Spacecraft Engineering,2016,25(6):116-121.
    [20] YE H L,ZHENG W,GUO H,et al. Effects of temporal aampling interval on the Moon-based Earth observation geometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,99:1-9.
    [21] HARRIES J E,RUSSELL J E,HANAFIN J A,et al. The geostationary Earth radiation budget project[J]. Bulletin of the American Meteorological Society,2005,86(7):945-960. doi:  10.1175/BAMS-86-7-945
    [22] DOELLING D R,CONOR H,RAJENDRA B,et al. Geostationary visible imager calibration for the CERES SYN1deg edition 4 product[J]. Remote Sensing,2018,10(2):288. doi:  10.3390/rs10020288
    [23] DOELLING D R,NORMAN G L,DENNIS F K,et al. Geostationary enhanced temporal interpolation for CERES flux products[J]. Journal of Atmospheric & Oceanic Technology,2013,30(6):1072-1090.
    [24] WANG H,GUO Q,LI A,et al. Comparative study on the observation duration of the two-polar regions of the Earth from four specific sites on the Moon[J]. International Journal of Remote Sensing,2019(6):1-14.
  • [1] 王赤, 李磊, 张爱兵, 张珅毅, 侯东辉, 徐子贡, 谢良海, 王慧姿, 罗朋威, 郭静楠, 史全岐, 张小平.  月表太阳风和粒子辐射环境—“嫦娥四号”观测新结果 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20220020
    [2] 孙淼, 张鸿宇, 迟润强, 庞宝君, 肖俊孝, 范锦彪, 钱成, 卢孜筱, 姜生元.  侵彻式月壤探测地面模拟试验研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210149
    [3] 邓玉, 郭华东, 刘广, 叶罕霖, 黄靖.  月基对地观测图像模拟与应用研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210073
    [4] 张吉栋, 李向月, 平劲松.  月球南极月基平台选址分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210079
    [5] 郭华东, 丁翼星, 刘广.  月基对地观测研究现状与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210080
    [6] 陈国强, 郭华东, 梁达, 丁翼星, 吕明阳, 刘广.  月基SAR对地观测时空特性研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210076
    [7] 郭华东, 丁翼星, 刘广.  月基对地观测研究现状与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210080
    [8] 叶罕霖, 邓玉, 刘广, 郭华东.  月基观测地球大气层顶辐射特性研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210074
    [9] 刘奇祺, 陈楠, 林偲蔚.  月表可照时间谱和太阳辐射谱空间分布特征研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210100
    [10] 张天翼, 彭松, 田鹤.  无人星球车非几何障碍感知研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200034
    [11] 曹鹏飞, 李维国, 王俊彦, 李海阳.  高精度模型下Halo轨道设计研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.03.012
    [12] 郭朋真, 李博, 康冬鹏, 于思源, 王淇, 南方, 谭立英, 马晶.  J2轨道模型对月地激光通信预瞄准精度影响研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.06.003
    [13] 关昭, 乔卫东, 杨建峰, 薛彬, 陶金有.  火星多光谱相机的地面几何标定研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.009
    [14] 韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛.  脉冲激光模拟空间载荷单粒子效应研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.12.012
    [15] 蓝磊, 杨墨.  基于双椭球模型的双星系统稳定性研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.015
    [16] 肖尧, 阮晓钢, 魏若岩.  基于433 Eros的多面体引力模型精度与运行时间研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.006
    [17] 王汀, 郭延宁, 张瑶, 马广富.  基于模型预测控制的多约束火星精确着陆制导律研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.010
    [18] 赖小明, 白书欣, 赵曾, 庞勇, 殷参.  模拟月面环境钻进过程热特性研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.011
    [19] 刘宇鑫, 尚海滨, 王帅.  地球静止轨道卫星电推进位保策略研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.012
    [20] 孟治国, 平劲松, AlexanderGUSEV, 蔡占川, 陈思.  基于CELMS数据的月球东海微波辐射特性研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.03.009
  • 加载中
计量
  • 文章访问数:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2022-02-02
  • 网络出版日期:  2022-05-19

基于月基观测几何的地球辐射能量模拟研究

doi: 10.15982/j.issn.2096-9287.2022.20210078
    基金项目:  国家自然科学基金(41590852)
    作者简介:

    黄靖(1996– ),女,博士生,主要研究方向:月基对地观测。通讯地址:中国科学院空天信息创新研究院(100094)电话:(010)82178182E-mail:huangjing@radi.ac.cn

    刘广(1979– ),男,教授,博士生导师,主要研究方向:月基对地观测,微波遥感对地观测研究。本文通讯作者。通讯地址:中国科学院空天信息创新研究院(100094)电话:(010)82178103E-mail:liuguang@radi.ac.cn

  • ● A simulation method for Earth outgoing radiation viewed from a Moon-based platform is proposed based on one-to-one mapping method considering observation geometry of the Earth and the Moon. ● Experiments of Earth outgoing longwave and shortwave radiation viewed from a Moon-based sensor in one year are carried out and the regularity is found out according to the characteristics of the lunar orbit. ● The characteristics of spatial coverage and angular distribution are analyzed. ● The simulation method can effectively support the observation of Earth’s outgoing radiation and lay the foundation for future research.

摘要: 月基平台以其整体性、多角度、长周期等特点,可望实现对地球整体辐射收支进行精确估算。为了评估月基平台对地球辐射能量的观测能力,建立了基于地月几何关系的一一映射算法,使用戈达德地球观测系统模型第五版(Goddard Earth Observation System model version 5,GEOS-5)数据作为模型输入,用以模拟月基视场地球向外辐射能量,从而形成对月基观测的地球辐射能量规律性认识。结果表明:月基传感器可以观测包括极区在内约178°跨度的经纬度区域;月球变轨道倾角将为地球高纬度地区提供更好的观测条件,极区观测高度角可达到60°。该模拟方法可以为观测地球向外辐射提供有效支持,为后续研究打下坚实的基础。

注释:
1)  ● A simulation method for Earth outgoing radiation viewed from a Moon-based platform is proposed based on one-to-one mapping method considering observation geometry of the Earth and the Moon. ● Experiments of Earth outgoing longwave and shortwave radiation viewed from a Moon-based sensor in one year are carried out and the regularity is found out according to the characteristics of the lunar orbit. ● The characteristics of spatial coverage and angular distribution are analyzed. ● The simulation method can effectively support the observation of Earth’s outgoing radiation and lay the foundation for future research.

English Abstract

黄靖, 郭华东, 刘广, 邓玉. 基于月基观测几何的地球辐射能量模拟研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210078
引用本文: 黄靖, 郭华东, 刘广, 邓玉. 基于月基观测几何的地球辐射能量模拟研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210078
HUANG Jing, GUO Huadong, LIU Guang, DENG Yu. Geometric Simulation of Earth’s Outgoing Radiation Viewed from a Moon-Based Platform[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210078
Citation: HUANG Jing, GUO Huadong, LIU Guang, DENG Yu. Geometric Simulation of Earth’s Outgoing Radiation Viewed from a Moon-Based Platform[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210078
参考文献 (24)

返回顶部

目录

    /

    返回文章
    返回